Формула нахождения расстояния до небесных тел. Определение расстояний до тел сс и размеров этих небесных тел

Используя третий закон Кеплера, среднее расстояние всех планет от Солнца можно выразить через среднее расстояние Земли от Солнца. Определив его в километрах, можно найти в этих единицах все расстояния в Солнечной системе.

С 40-х годов нашего века радиотехника позволила определять расстояния до небесных тел посредством радиолокации, о которой вы знаете из курса физики. Советские и американские ученые уточнили радиолокацией расстояния до Меркурия, Венеры, Марса и Юпитера.

Классическим способом определения расстояний был и остается угломерный геометрический способ. Им определяют расстояния и до далеких звезд, к которым метод радиолокации неприменим. Геометрический способ основан на явлении параллактического смещения.

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя (рис. 36).

Рис. 36. Измерение расстояния до недоступного предмета по параллактическому смещению.

Посмотрите на вертикально поставленный карандаш сначала одним глазом, затем другим. Вы увидите, как он при этом переменил положение на фоне далеких предметов, направление на него изменилось. Чем дальше вы отодвинете карандаш, тем меньше будет параллактическое смещение. Но чем дальше отстоят друг от друга точки наблюдения, т. е. чем больше базис, тем больше параллактическое смешение при той же удаленности предмета. В нашем примере базисом было расстояние между глазами. Принцип параллактического смещения широко используется в военном деле при определении расстояния до цели посредством дальномера. В дальномере базисом является расстояние между объективами.

Для измерения расстояний до тел Солнечной системы за базис берут радиус Земли. Наблюдают положение светила, например Луны, на фоне далеких звезд одновременно из двух обсерваторий. Расстояние между обсерваториями должно быть как можно больше, а соединяющий их отрезок должен составлять угол, по возможности близкий к прямому с направлением на светило, чтобы параллактическое смещение было максимальным. Определив из двух точек А и В (рис. 37) направления на наблюдаемый объект, несложно вычислить угол р, под которым с этого объекта был бы виден отрезок, равный радиусу Земли.

Рис. 37. Горизонтальный параллакс светила.

Угол, под которым со светила виден радиус Земли, перпендикулярный к лучу зрения, называется горизонтальным параллаксом .

Чем больше расстояние до светила, тем меньше угол р. Этот угол равен параллактическому смещению светила для наблюдателей, находящихся в точках Л и В, точно так же как СЛВ для наблюдателей веточках С и В (рис. 36). CAB удобно определять по равному ему ВCA а равны они, как углы при параллельных прямых (DC параллельна AB по построению).

Расстояние

где R - радиус Земли. Приняв R за единицу, можно выразить расстояние до светила в земных радиусах.

Параллакс Луны составляет 57". Все планеты и Солнце гораздо дальше, и их параллаксы составляют секунды. Параллакс Солнца, например, рс = 8,8". Параллаксу Солнца соответствует среднее расстояние Земли от Солнца, примерно равное 150 000 000 км. Это расстояние принимается за одну астрономическую единицу (1 а. е.). В астрономических единицах часто измеряют расстояния между телами Солнечной системы.

Рис. 38. Определение линейных размеров небесных светил по их угловым размерам.

При малых углах sin р = p, если угол р выражен в радианах. Если р выражен в секундах дуги, то вводится множитель

где 206265 - число секунд в одном радиане.

Знание этих соотношений упрощает вычисление расстояния по известному параллаксу:

  1. Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля?
  2. Расстояние Луны от Земли в ближайшей к Земле точке орбиты (перигее) 363 000 км, а в наиболее удаленной точке (апогее) 405 000 км. Определите величину горизонтального параллакса Луны в этих положениях.
  3. Измерьте транспортиром угол DCA (рис. 36) и угол ASC (рис. 37), линейкой - длину базисов. Вычислите по ним соответственно расстояния СА и SC и проверьте результат прямым измерением по рисункам.
  4. Измерьте на рисунке 38 транспортиром углы р и Q и определите по полученным данным отношение диаметров изображенных тел.

Решебник по астрономии 11 класс на урок №10 (рабочая тетрадь) - Определение расстояний до небесных тел в Солнечной системе и их размеров

1. Закончите предложения.

Для измерения расстояний в пределах Солнечной системы используют астрономическую единицу (а. е.), которая равна среднему расстоянию от Земли до Солнца.

1 а.е. = 149 600 000 км

Расстояние до объекта по времени прохождения радиолокационного сигнала можно определить по формуле, где S = 1/2·ct, где S - расстояние до объекта, c - скорость света, t - время прохождения светила.

2. Дайте определения понятиям «параллакс» и «базис»; на рисунке 10.1 покажите эти величины.

Параллакс - угол p, под которым из недоступного места (точка C) будет виден отрезок AB, называемый базисом.

Базис - тщательно измеренное расстояние от точки A (наблюдатель) до какой-либо достигнутой для наблюдения точки B.

3. Как с помощью понятий параллакса и базиса определить расстояние до удаленного недоступного объекта С (рис. 10.1)?

По величине базиса и прилегающим к нему углам треугольника ABC найти расстояние AC. При измерениях на Земле этот метод называют триангуляцией.

4. Угол, под которым со светила S виден радиус Земли, перпендикулярный лучу зрения, называется горизонтальным параллаксом p (рис, 10.2). Определите расстояния: а) до Луны, если ее горизонтальный параллакс p = 57′; б) до Солнца, горизонтальный параллакс которого p = 8,8″.

5. Дополните рисунок 10.3 необходимыми построениями и выведите формулу, позволяющую определить радиус небесного светила (в радиусах Земли), если известны угловой радиус светила p и его горизонтальный параллакс p.

r = D · sin(ρ); R = D · sin(ρ)/sin(p) · R; r = ρ»/p» · R.

6. Решите следующие задачи (при расчетах считайте, что c = 3 · 10 5 км/с, R 3 = 6370 км).

Вариант 1.

1. Радиолокатор зафиксировал отраженный сигнал от пролетающего вблизи Земли астероида через t - 0,667 с. На каком расстоянии от Земли находился в это время астероид?

2. Определите расстояние от Земли до Марса во время великого противостояния, когда его горизонтальный параллакс p = 23,2″.

3. При наблюдении прохождения Меркурия по диску Солнца определили, что его угловой радиус p = 5,5″, а горизонтальный параллакс p = 14,4″. Определите линейный радиус Меркурия.

Вариант 2.

1. Сигнал, посланный радиолокатором к Венере, возвратился назад через t - 4 мин 36 с. На каком расстоянии в это время находилась Венера в своем нижнем соединении?

Ответ: 41 млн км.

2. На какое расстояние к Земле подлетал астероид Икар, если его горизонтальный параллакс в это время был p = 18,0″?

Ответ: 1,22 млн км.

3. С помощью наблюдений определили, что угловой радиус Марса p = 9,0″, а горизонтальный параллакс p = 16,9″. Определите линейный радиус Марса.

ОПРЕДЕЛЕНИЕ РАССТОЯНИЙ И РАЗМЕРОВ ТЕЛ В СОЛНЕЧНОЙ СИСТЕМЕ

Разумов Виктор Николаевич,

учитель МОУ «Большеелховская СОШ»

Лямбирского муниципального района Республики Мордовия

10-11 класс

УМК Б.А.Воронцова-Вельяминова

Форма и размеры Земли

Эратосфен

(276 -194 г. до н.э.)

Способ Эратосфена:

  • измерить длину дуги земного меридиана в линейных единицах и определить, какую часть полной окружности эта дуга составляет;
  • получив эти данные, вычислить длину дуги в 1°, а затем длину окружности и величину ее радиуса, т. е. радиуса земного шара.
  • Длина дуги меридиана в градусной мере равна разности географических широт двух пунктов: φВ – φА.

Греческий учёный Эратосфен, живший в Египте, провёл первое достаточно точное определение размеров Земли.

Эратосфен

(276 -194 г. до н.э.)

Чтобы определить разность географических широт, Эратосфен сравнил полуденную высоту Солнца в один и тот же день в двух городах, находящихся на одном меридиане.

В полдень 22 июня в Александрии Солнце отстоит от зенита на 7,2°. В этот день в полдень в городе Сиена (ныне Асуан) Солнце освещает дно самых глубоких колодцев, т. е. находится в зените. Следовательно, длина дуги составляет 7,2°. Расстояние между Сиеной и Александрией (800 км) у Эратосфена равна 5000 греческих стадий, т.е. 1 стадия = 160 м.

= , L =250 000 стадий или 40 000 км, что соответствует современным измерениям длины окружности земного шара.

Вычисленный радиус Земли по Эратосфену составил 6 287 км.

Современные измерения дают для усреднённого радиуса Земли величину 6 371 км.

Базис

Способ, основанный на явлении параллактического смещения и предусматривающий вычисление расстояния на основе измерений длины одной из сторон (базиса – АВ) и двух углов А и В в треугольнике АСВ, применяется, если оказывается невозможным непосредственное измерение кратчайшего расстояния между пунктами.

Параллактическим смещением называется изменение направления на предмет

при перемещении наблюдателя.

Для определения длины дуги используется система треугольников – способ триангуляции, который впервые был применен еще в 1615 г.

Пункты в вершинах этих треугольников выбираются по обе стороны дуги на расстоянии 30- 40 км друг от друга так, чтобы из каждого пункта были видны по крайней мере два других.

Точность измерения базиса длиной в 10 км составляет около 1 мм.

Измерив с помощью угломерного инструмента (теодолита) углы в треугольнике, одной из сторон которого является базис, геодезисты получают возможность вычислить длину двух других его сторон.

Базис

Триангуляция, рисунок XVI века

Схема выполнения триангуляции

В какой степени форма Земли отличается от шара, выяснилось в конце XVIII в.

Для уточнения формы Земли Французская академия наук снарядила две экспедиции: в экваториальные широты Южной Америки в Перу и на территории Финляндии и Швеции вблизи Северного полярного круга.

Измерения показали, что длина одного градуса дуги меридиана на севере больше, чем вблизи экватора.

Это означало, что форма Земли – не идеальный шар: она сплюснута у полюсов. Ее полярный радиус на 21 км короче экваториального.

Для школьного глобуса масштаба 1: 50 000 000 отличие этих радиусов будет всего 0,4 мм, т. е. совершенно незаметно.

Отношение разности величин экваториального и полярного радиусов Земли к величине экваториального называется сжатием . По современным данным, оно составляет 1/298, или 0,0034, т.е. сечение Земли по меридиану будет эллипсом .

В настоящее время форму Земли принято характеризовать следующими величинами:

сжатие эллипсоида –1: 298,25;

средний радиус – 6371,032 км;

длина окружности экватора – 40075,696 км.

В XX в. благодаря измерениям, точность которых соста-вила 15 м, выяснилось, что земной экватор также нельзя счи-тать окружностью.

Сплюснутость экватора составляет всего 1/30 000 (в 100 раз меньше сплюснутости меридиана).

Более точно форму нашей планеты передает фигура, называемая эллипсоидом , у которого любое сечение плоскостью, проходящей через центр Земли, не является окружностью.

Определение расстояний в Солнечной системе. Горизонтальный параллакс

Горизонтальный параллакс светила

Измерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда был впервые определен горизонтальный параллакс Солнца.

Горизонтальным параллаксом (p ) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения.

Значению параллакса Солнца 8,8” соответствует расстояние равное 150 млн км. Одна астрономическая единица (1 а. е.) равна 150 млн км.

Для малых углов, выраженных в радианах, sin p ≈ p .

Наибольшее значение имеет параллакс Луны, который в среднем составляет 57".

Во второй половине XX в. развитие радиотехники позволило определять расстояния

до тел Солнечной системы посредством радиолокации.

Первым объектом среди них стала Луна. На основе радиолокации Венеры величина астрономической единицы определена с точностью порядка километра.

В настоящее время благодаря использованию лазеров стало возможным провести оптическую локацию Луны.

При этом расстояния до лунной поверхности измеряются с точностью до сантиметров.

Пример решения задачи

На каком расстоянии от Земли находится Сатурн, когда его горизонтальный параллакс равен 0,9"?

Дано:

p1=0,9“

D= 1 а.е.

p  = 8,8“

D1 = R ,

D = R ,

Решение:

D1 = = = 9,8 а.е.

Ответ: D1 = 9,8 а.е.

Определение размеров светил

Зная расстояние до светила, можно определить его линейные размеры, если измерить его угловой радиус р . Формула, связывающая эти величины, аналогична формуле для определения параллакса:

Пример решения задачи

Чему равен линейный диаметр Луны, если она видна с расстояния 400 000 км под углом примерно 30"?

Дано:

D= 400000 км

ρ = 30’

Решение:

Если ρ выразить в радианах, то r = D ρ

d = = 3490 км.

Ответ: d= 3490 км.

Учитывая, что угловые диаметры даже Солнца и Луны составляют примерно 30", а все планеты видны невооруженному глазу как точки, можно воспользоваться соотношением: sin р ≈ р .

Следовательно,

Если расстояние D известно, то r = D ρ , где величина ρ выражена в радианах.

Вопросы (с.71)

1. Какие измерения, выполненные на Земле, сви-детельствуют о ее сжатии?

2. Меняется ли и по какой причи-не горизонтальный параллакс Солнца в течение года?

3. Каким методом определяется расстояние до ближайших планет в настоящее время?

Домашнее задание

2) Упражнение 11 (с.71)

1. Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля?

2. Расстояние Луны от Земли в ближайшей к Земле точке орбиты (перигее) 363 000 км, а в наиболее удаленной (апогее) – 405 000 км. Определите горизонтальный параллакс Луны в этих положениях.

3. Во сколько раз Солнце больше, чем Луна, если их угловые диаметры одинаковы, а горизонтальные параллаксы равны 8,8" и 57" соответственно?

4. Чему равен угловой диаметр Солнца, видимого с Нептуна?

  • Воронцов-Вельяминов Б.А. Астрономия. Базовый уровень. 11 кл. : учебник/ Б.А. Воронцов-Вельяминов, Е.К.Страут. - М.: Дрофа, 2013. – 238с
  • CD-ROM «Библиотека электронных наглядных пособий «Астрономия, 9-10 классы». ООО «Физикон». 2003
  • http://static.webshopapp.com/shops/021980/files/053607438/fotobehang-planeten-232cm-x-315cm.jpg
  • http://images.1743.ru/images/1743/2017/06_june/image_18062017102234_14977633549594.jpg
  • http://www.creationmoments.com/sites/creationmoments.com/files/images/What%27s%20the%20Right%20Answer.jpg
  • https://videouroki.net/videouroki/conspekty/geom9/26-izmieritiel-nyie-raboty.files/image021.jpg
  • http://www.muuseum.ut.ee/vvekniga/pages/data/geodeesia/1-CD006-Triangulation_16th_century.jpg
  • http://elima.ru/i/12/000054e.jpg
  • http://otvet.imgsmail.ru/download/182729882_1ef2e5f39d37858546ff499b3558a78a_800.png
  • http://www.radartutorial.eu/01.basics/pic/radarprinzip.bigger.jpg

Тема: Определение расстояний до тел СС и размеров этих небесных тел.

Ход урока:

I. Опрос учащихся (5-7 минут). Диктант.

  1. Ученый, создатель гелиоцентрической системы мира.
  2. Ближайшая точка орбиты ИСЗ.
  3. Значение астрономической единицы.
  4. Основные законы небесной механики.
  5. Планета, открытая на «кончике пера».
  6. Значение круговой (I космической) скорости для Земли.
  7. Отношение квадратов периодов обращения двух планет равно 8. Чему равно отношение больших полуосей этих планет?
  8. В какой точке эллиптической орбиты ИСЗ имеет минимальную скорость?
  9. Немецкий астроном, открывший законы движения планет
  10. Формула третьего закона Кеплера, после уточнения И. Ньютона.
  11. Вид орбиты межпланетной станции, посланной для облета Луны.
  12. Чем отличается первая космическая скорость от второй.
  13. В какой конфигурации находится Венера, если она наблюдается на фоне диска Солнца?
  14. В какой конфигурации Марс ближе всего к Земле.
  15. Виды периодов движения Луны=(временных)?

II Новый материал

1) Определение расстояний до небесных тел.
В астрономии нет единого универсального способа определения расстояний. По мере перехода от близких небесных тел к более далеким одни методы определения расстояний сменяют другие, служащие, как правило, основой для последующих. Точность оценки расстояний ограничивается либо точностью самого грубого из методов, либо точностью измерения астрономической единицы длины (а. е.).
1-й способ: (известен) По третьему закону Кеплера можно определить расстояние до тел СС, зная периоды обращений и одно из расстояний.
Приближённый метод.

2-й способ: Определение расстояний до Меркурия и Венеры в моменты элонгации (из прямоугольного треугольника по углу элонгации).
3-й способ: Геометрический (параллактический).
Пример: Найти неизвестное расстояние АС.
[АВ] – Базис - основное известное расстояние, т. к. углы САВ и СВА – известны, то по формулам тригонометрии (теорема синусов) можно в ∆ найти неизвестную сторону, т. е. . Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя.
Параллакс- угол (АСВ), под которым из недоступного места виден базис (АВ - известный отрезок). В пределах СС за базис берут экваториальный радиус Земли R=6378км.

Пусть К - местонахождение наблюдателя, из которого светило видно на горизонте. Из рисунка видно, что из прямоугольного треугольника гипотенуза, расстояние D равно: , так как при малом значении угла если выражать величину угла в радианах и учитывать, что угол выражен в секундах дуги, а 1рад =57,3 0 =3438"=206265" , то и получается вторая формула.

Угол (ρ) под которым со светила, находящегося на горизонте (┴ R - перпендикулярно лучу зрения) был бы виден экваториальный радиус Земли называется горизонтальным экваториальным параллаксом светила.

Согласно теории всемирного тяготения всякое массивное, изолированное тело, вращающееся вокруг оси с определенной скоростью (не очень быстро), должно принять форму, близкую к шару. Действительно, все наблюдаемые массивные небесные тела (Солнце, Луна, планеты) имеют формы, мало отличающиеся от правильных шаров. Шарообразность Земли хорошо видна на ее фотографиях, полученных из космоса (1967-1969 гг.).

Шарообразность Земли позволяет определить ее размеры способом, который был впервые применен еще Эратосфеном в III в. до н. э. Идея этого способа проста. Возьмем на земном шаре две точки O 1 и О 2 , лежащие на одном географическом меридиане (рис. 38). Обозначим длину дуги меридиана O 1 O 2 (например, в километрах) через, а ее угловое значение (например, в градусах) - через°. Тогда длина дуги 1° меридианабудет равна, а длина всей окружности меридианагде R - радиус земного шара. Отсюда

Угловое значение дуги ° равно разности географических широт точек O 1 и О 2 , т.е.° =-.

Значительно сложнее определить линейное расстояние между точками O 1 и О 2 . Длина дугиопределяется путем вычислений с помощью специального способа, который требует непосредственного измерения только сравнительно небольшого расстояния - базиса и ряда углов. Этот способ разработан в геодезии и называетсятриангуляцией .

Суть метода триангуляции заключается в следующем. По обе стороны дуги O 1 О 2 (рис. 39), длину которой необходимо определить, выбирается несколько точек А, В, С, ... на расстояниях 30-40 км одна от другой. Точки выбираются так, чтобы из каждой были видны по меньшей мере две другие точки. Во всех точках устанавливаются геодезические сигналы - вышки в форме пирамид - высотой в несколько десятков метров. Наверху сигнала устраивается площадка для наблюдателя и инструмента. Расстояние между какими-нибудь двумя точками, например O 1 А, выбирается на совершенно ровной поверхности и принимается за базис. Длину базиса очень тщательно измеряют непосредственно с помощью специальных мерных лент. Наиболее точные современные измерения базиса длиной в 10 км производятся с ошибкой ±2 мм. Затем устанавливают угломерный инструмент (теодолит)

последовательно в точках O 1 , A, В, С, ..., O 2 и измеряют все углы треугольников O 1 АВ, АВС, BCD, ... Зная в треугольнике O 1 AB все углы и сторону O 1 A (базис), можно вычислить и две другие его стороны O 1 B и АВ. При этих вычислениях учитывается, что треугольники не плоские, а сферические. Далее, определив из точки O 1 азимут направления стороны O 1 В (или O 1 A), можно спроецировать ломаную линию O 1 ВDO 2 (или O 1 АСЕO 2) на меридиан O 1 O 2 , т.е. получить длину дуги O 1 O 2 в линейных мерах.

6.2. Определение расстояний до небесных тел

Зная горизонтальный экваториальный параллакс р 0 светила, легко определить его расстояние от центра Земли (см. рис. 20). Действительно, если ТО = R 0 есть экваториальный радиус Земли, ТМ =- расстояние от центра Земли до светила М, а угол р - горизонтальный экваториальный параллакс светила р 0 , то из прямоугольного треугольника ТОМ имеем

Для всех светил, кроме Луны, параллаксы очень малы. Поэтому формулу (3.1) можно написать иначе, положив

а именно,

(3.2)

Расстояние получается в тех же единицах, в которых выражен радиус Земли R 0 . По формуле (3.2) определяются расстояния до тел Солнечной системы. Быстрое развитие радиотехники дало астрономам возможность определять расстояния до тел Солнечной системы радиолокационными методами. В 1946 г. была произведена радиолокация Луны, а в 1957-1963 гг.- радиолокация Солнца, Меркурия, Венеры, Марса и Юпитера. По скорости распространения радиоволн с = 3 × 105 км/сек и по промежутку времени t (сек) прохождения радиосигнала с Земли до небесного тела и обратно легко вычислить расстояние до небесного тела