Значение гидроксил, гидроксильная группа в словаре иностранных выражений. Реакции с участием гидроксильной группы Гидроксильная группа как функциональная

Функциональными группами называются группы атомов, которые обуславливают характерные химические свойства данного класса веществ.

Спирты

Строение молекул спиртов R-OH. Атом кислорода, входящий в гидроксильную группу молекул спиртов, резко отличается от атомов водорода и углерода по способности притягивать и удерживать электронные пары. В молекулах спиртов имеются полярные связи С-О и О-Н.
Учитывая полярность связи О-Н и значительный положительный заряд на атоме водорода, говорят, что водород гидроксильной группы имеет «кислотный» характер. Этим он резко отличается от атомов водорода, входящих в углеводородный радикал. Атом кислорода гидроксильной группы имеет частичный отрицательный заряд и две неподеленные электронные пары, что дает возможность молекулам спирта образовывать водородные связи.

Фенолы

По химическим свойствам фенолы отличаются от спиртов, что вызвано взаимным влиянием в молекуле фенола гидроксильной группы и бензольного ядра (фенил — С 6 Н 5). Это влияние сводится к тому, что π-электроны бензольного ядра частично вовлекают в свою сферу неподеленные электронные пары атома кислорода гидроксильной группы, в результате чего уменьшается электронная плотность у атома кислорода. Это снижение компенсируется за счет большой поляризации связи О-Н, что в свою очередь приводит к увеличению положительного заряда на атоме водорода:

Следовательно, водород гидроксильной группы в молекуле фенола имеет кислотный характер.
Влияние атомов в молекулах фенола и его производных взаимно. Гидроксильная группа оказывает влияние на плотность π-электронного облака в бензольном кольце. Она понижается у атома углерода, связанного с ОН-группой (т. е у 1-го и 3-го атомов углерода, метаположение) и повышается у соседних атомов углерода – 2, 4, 6-го – орто — и пара положения.
Водородные атомы бензола и орто — и пара положения становятся более подвижными и легко замещаются на другие атомы и радикалы.

Альдегиды

Альдегиды имеют общую формулу , где — С=О карбонильная группа . Атом углерода в карбонильной группе sp 2 – гибридизирован. Атомы, непосредственно с ним связанные, находятся в одной плоскости. Вследствие большой электороотрицательности атома кислорода по сравнению с углеродным связь С=О сильно поляризована за счет смещения электронной плотности π-связи к кислороду:

Под влиянием карбонильного атома углерода в альдегидах увеличивается полярность связи С–Н, что повышает реакционноспособность этого атома Н.

Карбоновые кислоты

Карбоновые кислоты содержат функциональную группу , называемую карбоксильной группой , или карбоксилом . Так она названа потому, что состоит из карбонильной группы -С=О и гидроксильной –ОН .
В карбоновых кислотах гидроксильная группа связана с углеводородным радикалом и карбоксильной группой. Ослабление связи между кислородом и водородом в гидроксильной группе объясняется разностью электроотрицательностей атомов углерода, кислорода и водорода. Атом углерода приобретает некоторый положительный заряд. Этот атом углерода притягивает к себе электронное облако от атома кислорода гидроксильной группы. Компенсируя смещенную электронную плотность, атом кислорода гидроксильной группы оттягивает к себе электронное облако соседнего атома водорода. Связь О–Н в гидроксильной группе становится более полярной, и атом водорода приобретает большую подвижность.

Фенольный гидроксил в результате химических превращений дает те же продукты, что и спиртовой гидроксил: феноляты, простые и сложные эфиры и др. На ход и направление соответствующих реакций бензольное кольцо практически не влияет. А вот реакционная способность фенольного гидроксила из-за ароматического ядра значительно снижается. Примером может послужить отрицательный результат, полученный при попытках заместить гидроксил на хлор. Концентрированные галогенводородные кислоты гидроксил в фенолах не замещают, пятихлористый фосфор вызывает хлорирование в ядро, треххлористый фосфор образует трифенилфосфат. Следует в то же время отметить, что иногда фенольный гидроксил все же удается заместить на хлор. Это случается с фенолами, содержащими в кольце, кроме гидроксила, электроноакцепторные заместители. С этими фенолами реакцию удается провести как бимолекулярное нуклеофильное замещение

14.1.2.1. Кислотность. Подобно спиртам фенолы проявляют определенную кислотность. Учитывая эту особенность самого фенола, его иногда называют карболовой кислотой, карболкой. Для того чтобы иметь возможность судить о кислотности фенолов, сопоставим константы кислотности К а некоторых родственных им соединений.

Соединения К а

спирты 10 -16 – 10 -18

фенолы 10 -10

карбоновые кислоты 10 -5

п -крезол 0,67· 10 -10

о -хлорфенол 77· 10 -10

о -нитрофенол 600· 10 -10

пирокатехин 1·10 -10

резорцин 3· 10 -10

гидрохинон 2· 10 -10

Из этих данных видно, что кислотность фенолов на много порядков выше, чем спиртов. Это объясняется тем, что феноксид-анион, получающийся при депротонировании фенола, в значительной степени стабилизирован за счет делокализации отрицательного заряда с участием бензольного кольца

На стабильность феноксид-аниона, следовательно, и на кислотность фенола влияют и заместители в ароматическом кольце. Это влияние зависит от природы заместителя, от их числа и положения в бензольном кольце. В общем случае электронодонорные заместители снижают кислотность фенолов, а электроноакцепторные заместители повышают ее.

Будучи кислотами, фенолы с основаниями дают соли, которые называются фенолятами

При добавлении к фенолам хлористого железа в разбавленных водных или спиртовых растворах появляется фиолетовое (фенол) или синее окрашивание (крезолы). Появление окраски в этих случаях связывают с образованием фенолятов трехвалентного железа, поглощающих свет в видимой области.

14.1.2.2. Образование простых эфиров. Просто реакцией фенолов со спиртами простые эфиры фенолов не получить. Это удается только при использовании сильных алкилирующих средств (диметилсульфат) или использовании реакции Вильямсона. В обоих случаях реакция проводится в щелочной среде, в которой фенол существует в виде фенолят-аниона. Этот нуклеофил, который гораздо сильнее самого фенола, атакует галогенид или сульфат с образованием простого эфира (реакция S N 2)

Нетрудно видеть, что в реакции Вильямсона для получения одного и того же простого эфира можно использовать и другую пару реагентов – арилгалогенид и алкоголят спирта. Однако ароматически связанный галоген неспособен участвовать в этой реакции. Это удается лишь в том случае, когда в ароматическом кольце, кроме галогена, имеются активирующие группы – электроноакцепторные группы. В этом случае реакция идет как обычная реакция бимолекулярного замещения

Реакция Вильямсона используется не только как лабораторный метод, но и для получения некоторых простых эфиров в промышленном масштабе. Известным примером является синтез 2,4-дихлорфеноксиуксусной кислоты (2,4-Д) реакцией 2,4-дихлорфенолята натрия с натриевой солью монохлоруксусной кислоты

В результате реакции Вильямсона кислородный атом фенола получает алкильный заместитель, поэтому говорят, что происходит О -алкилирование. При этом практически не происходит С -алкилирования, т.е. вступления заместителя в кольцо. Объясняется это тем, что из двух конкурирующих реакций О - и С -алкилирования первая идет быстрее. Кроме того, во многих случаях продукт О -алкилирования термодинамически более устойчив. Однако это не всегда так. При 200 0 С аллилфениловый эфир изомеризуется в о -аллилфенол

Эта реакция присуща лишь аллиловым эфирам и носит название перегруппировки Кляйзена (1912 г.). Предполагается, что реакция идет через циклическое переходное состояние

В реакции Кляйзена происходит миграция аллильной группы в о -положение с одновременной аллильной перегруппировкой этой группы. Если обе о -положения заняты, то мигрирующая аллильная группа может занять п -положение. Опыты с меченым углеродом показали

что в этом случае перемещение аллильной группы в кольцо происходит не так как в предыдущем случае. Похоже на то, что при п -миграции аллильная группа отщепляется от эфира и в виде аллильного катиона атакует свободное положение бензольного кольца. Это напоминает перегруппировку Фриса с участием сложных эфиров фенолов.

Своеобразными простыми эфирами фенолов являются так называемые оксиэтилированные алкилфенолы, оказавшиеся хорошими неионогенными моющими средствами. Их получают реакцией алкилфенолов с окисью этилена в щелочной среде при 180 0 С

К простым эфирам фенолов относятся и эпоксидные смолы, получаемые на основе бис -фенола и эпихлоргидрина.

Обозначим средний фрагмент бис -фенола через R

Тогда реакцию бис -фенола с двумя молекулами эпихлоргидрина можно записать так

Образовавшийся диэпоксид вступает в реакцию раскрытия эпоксидного кольца

При многократном повторении этих реакций (Вильямсона и раскрытия эпоксидного кольца) получается эпоксидная смола

Смола может быть отверждена – превращена в полимер с трехмерной структурой несколькими способами. Чаще всего при этом используются трифункциональные амины, в частности, диэтилентриамин

При отверждении каждая аминогруппа действует как нуклеофил на эпоксидную группу

По завершении раскрытия эпоксидных колец получается полимер с поперечными связями.

14.1.2.3. Образование сложных эфиров. Как от гидроксилсодержащих соединений от фенолов можно было бы ожидать участия в реакции Фишера (этерификации) с кислотами с образованием сложных эфиров. Однако этого не происходит. Для фенолов карбоновые кислоты – слишком слабые ацилирующие агенты. Поэтому для получения сложных эфиров фенолов приходится использовать ангидриды и галогенангидриды карбоновых кислот в щелочной среде (метод Шоттен-Баумана)

Сложные эфиры фенолов обладают интересным свойством – при нагревании с хлористым алюминием они претерпевают перегруппировку с миграцией ацильной части эфира в свободное о - и п -положение бензольного кольца (перегруппировка Фриса , 1908 г.)

Предполагается, что перегруппировка Фриса протекает как реакция внутримолекулярного ацилирования: вначале происходит генерация ацилий-катиона RCO + , который далее атакует бензольное кольцо.

Некоторые сложные эфиры фенолов нашли применение как полимеры полиэфирного типа.

Еще в 1953 году в Германии был получен сложный эфир бис -фенола и угольной кислоты – поли-, обладающий уникальными свойствами. Полимер (лексан, мерлон, поликарбонат) оказался прозрачным как стекло и прочным как сталь. Поликарбонат обычно получают реакцией бис -фенола с фосгеном

14.1.2.4. Отщепление гидроксильной группы. В фенолах гидроксильная группа с бензольным кольцом связана достаточно прочно. Можно даже провести аналогию с ароматически связанным галогеном. Тем не менее, найдены условия элиминирования гидроксила фенолов. Это происходит при нагревании фенолов с цинковым порошком

Функциональные группы образуются атомами или их группами, которые замещают атом водорода в углеродной основе.

Функциональные группы обладают общими химическими свойствами, которые принадлежат к одному и тому же классу производных углеводородов, что позволяет проще классифицировать свойства соединений (например, спирты обладают общими свойствами) и облегчает изучение всей органической химии.

Надо признать, что наличие в молекуле нескольких функциональных групп значительно усложняет ситуацию, поскольку, такие молекулы могут участвовать в очень большом кол-ве химических реакций - тут уж ничего не поделать - органическая химия достаточно сложная наука.

Спирты: R-OH

Спирты являются производными предельных и непредельных углеводородов, в молекулах которых атом (атомы) водорода заменены гидроксильной группой (группами) -OH , которая определяет общие свойства всех спиртов. По этой причине, во многих случаях не имеет значения, какой будет остальная часть молекулы спирта, т.к. функциональная группа определяет общее поведение спиртов во многих химических реакциях.

Спирты принято обозначать общей формулой R-OH (R - остальная часть молекулы или углеводородный радикал). Названия спиртов заканчиваются на суффикс -ол , который заменяет суффикс -ан в названии соответствующего алкана .

Метанол (метиловый или древесный спирт) получают при помощи реакции синтеза из оксида углерода и водорода в присутствии катализатора при высоких значениях давления и температуры:

CO(г) + 2H 2 (г) → CH 3 OH(ж)

Метанол используют для производства формальдегида. Одно из перспективных направлений - использование метанола в качестве замены бензина.

Этанол (этиловый или винный спирт) получают из различных сахаристых веществ при помощи реакции брожения, вызываемой действием ферментов, которые вырабатывают дрожжевые грибки (данный способ получения спирта применяют для приготовления алкогольных напитков):

C 6 H 12 O 6 (р-р) → 2CH 3 CH 2 OH(ж) + 2CO 2 (г)

Второй способ получения этанола - синтез из этилена в присутствии катализаторов (этанол используют в качестве растворителя в парфюмерной и фармацевтической промышленности, в виде добавок к бензину для повышения октанового числа):

H 2 C = CH 2 +H 2 O → CH 3 -CH 2 -OH

Карбоновые кислоты: R-COOH

Функциональную группу в карбоновых кислотах составляет карбоксильная группа -COOH .

O || R-C-OH

Названия карбоновых кислот заканчиваются на -овая кислота .

Карбоновые кислоты получают при помощи реакций окисления спиртов. Ниже приведена реакция окисления этанола на воздухе, в результате которой образуется уксусная (этановая) кислота (не оставляйте на длительное время открытой бутылку с вином):

CH 3 CH 2 OH(ж)+O 2 (г) → CH 3 COOH(ж)+H 2 O(ж)

Многие карбоновые кислоты имеют резкий неприятный запах.

Сложные эфиры: R-COO-R

Состав сложных эфиров во многом схож с карбоновыми кислотами (атом водорода в функциональной группе заменен второй группой -R).

Сложные эфиры получают из карбоновых кислот при их взаимодействии со спиртами (реакция этерификации ), при этом, в отличие от карбоновых кислот, получаемые сложные эфиры обладают приятным запахом (сложные эфиры придают аромат цветам, запах плодам и ягодам):

O O || || R-C-OH + H-O-R" → R-C-O-R" + H 2 O

Простые эфиры: R-O-R

Функциональную группу простых эфиров представляет один атом кислорода, связанный с двумя углеводородными группами.

Простые эфиры в химическом плане достаточно инертны, используются в качестве растворителей в органических реакциях. Вступая (медленно) в реакцию с атмосферным кислородом, простые эфиры образуют пироксиды, являющиеся взрывоопасными соединениями (именно по этой причине медики отказались от использования диэтилового эфира в качестве наркоза).

Получают простые эфиры с помощью реакции дегидратации спиртов. Например диэтиловый эфир синтезируют дегидратацией этилового спирта в присутствии серной кислоты:

2CH 3 CH 2 OH(ж) → CH 3 CH 2 -O-CH 2 CH 3 (ж) + H 2 O(ж)

Если использовать два разных спирта, то получится смешанный эфир, содержащий две разные группы -R.

Альдегиды и кетоны

Функциональная группа альдегида - двухвалентная карбонильная группа связана с одним атомом водорода и углеводородным радикалом:

O || R-C-H

Функциональная группа кетона - двухвалентная карбонильная группа связана с двумя углеводородными радикалами:

O || R-C-R"

Альдегиды и кетоны получают в результате окисления спиртов. Альдегиды, имеющие в своей структуре бензольное кольцо, нашли широкое применение в парфюмерной промышленности, поскольку обладают приятным ароматом. Формальдегид (CH 2 =O) используется в качестве антисептика, а также в синтезе полимеров для получения фенопласта. Простейший кетон - ацетон (CH 3 -CO-CH 3) является хорошим органическим растворителем, используется в лакокрасочной промышленности.

Амиды и амины

Функциональная группа аминов:

Функциональная группа амидов:

O || R-C-NH 2

Амиды и амины являются производными аммиака, поэтому, относятся к слабым основаниям. Нашли широкое применение в производстве синтетических красителей, лекарственных препаратов, пластмасс, взрывчатых веществ.

Гидроксильная группа в спиртах

Гидроксильная группа — функциональная группа OH органических и неорганических соединений, в которой атомы водорода и кислорода связаны ковалентной связью. В органической химии носит также название «спиртовой группы».

Атом кислорода обуславливает поляризацию молекулы спиртов. Относительная подвижность атома водорода приводит к тому, что низшие спирты вступают в реакции замещения с щелочными металлами. В неорганической химии входят в состав оснований, в том числе, щелочей.

Гидроксильный радикал

Гидроксильный радикал — высокореакционный и короткоживущий радикал OH, образованный соединением атомов кислорода и водорода. Обычно образуется при распаде гидропероксидов, в атмосферной химии, взаимодействием возбуждённых молекул кислорода с водой или при действии ионизирующего излучения.

Роль в биологии

Гидроксильный радикал относится к реактивным формам кислорода и является наиболее активным компонентом оксидативного стресса. Он образуется в клетке в основном при восстановлении перекиси водорода в присутствии переходного металла. Время полужизни t 1/2 гидроксильного радикала in vivo — очень короткое — около 10 с, что в совокупности с его высокой реактивной способностью приводит к тому, что он является одним из наиболее опасных агентов, образующихся в организме. В отличие от супероксида, который может быть детоксифицирован супероксиддисмутазой, не существует фермента, который бы элиминировал гидроксильный радикал, из-за слишком короткого времени жизни, не достаточного для диффузии его в активный центр фермента. Единственная защита клетки от этого радикала — высокий уровень низкомолекулярных антиоксидантов, таких как глутатион. Образовавшийся гидроксильный радикал мгновенно реагирует с любой окисляемой молекулой в ближайшем окружении. Из наиболее биологически важных компонентов клетки гидроксильный радикал способен окислять углеводы, нуклеиновые кислоты, липиды и аминокислоты.