Изображение чисел на числовой прямой. Изображение действительных чисел на числовой оси

ГЛАВА 1. Переменные величины и функции

§1.1. Действительные числа
Первое знакомство с действительными числами происходит в школьном курсе математики. Всякое действительное число представляется конечной или бесконечной десятичной дробью.

Действительные (вещественные) числа делятся на два класса: класс рациональных и класс иррациональных чисел. Рациональными называются числа, которые имеют вид , где m и n – целые взаимно простые числа, но
. (Множество рациональных чисел обознается буквой Q ). Остальные действительные числа называются иррациональными . Рациональные числа представляются конечной или бесконечной периодической дробью (то же, что обыкновенные дроби), тогда иррациональными будут те и только те действительные числа, которые можно представить бесконечными непериодическими дробями.

Например, число
– рациональное, а
,
,
и т.п. – иррациональные числа.

Действительные числа можно также разделить на алгебраические - корни многочлена с рациональными коэффициентами (к ним относятся, в частности, все рациональные числа – корни уравнения
) – и на трансцендентные – все остальные (например, числа
и другие).

Множества всех натуральных, целых, действительных чисел обозначаются соответственно так: N Z , R
(начальные буквы слов Naturel, Zahl, Reel).

§1.2. Изображение действительных чисел на числовой оси. Интервалы

Геометрически (для наглядности) действительные числа изображают точками на бесконечной (в обе стороны) прямой линии, именуемой числовой осью . С этой целью на рассматриваемой прямой берётся точка (начало отсчёта – точка 0), указывается положительное направление, изображаемое стрелкой (обычно направо) и избирается единица масштаба, которую откладывают неограниченно в обе стороны от точки 0. Так изображаются целые числа. Чтобы изобразить число с одним десятичным знаком, надо каждый отрезок разделить на десять частей и т.д. Таким образом, каждое действительное число изобразится точкой на числовой оси. Обратно, каждой точке
соответствует действительное число, равное длине отрезка
и взятое со знаком «+» или «–», в зависимости от того, лежит ли точка правее или левее от начала отсчёта. Таким образом устанавливается взаимнооднозначное соответствие между множеством всех действительных чисел и множеством всех точек числовой оси. Термины «действительное число» и «точка числовой оси» употребляются как синонимы.

Символом будем обозначать и действительное число, и точку, ему соответствующую. Положительные числа располагаются правее точки 0, отрицательные – левее. Если
, то на числовой оси точка лежит левее точки . Пусть точке
соответствует число , тогда число называется координатой точки , пишут
; чаще саму точку обозначают той же буквой , что и число. Точка 0 – начало координат. Ось обозначают тоже буквой (рис.1.1).

Рис. 1.1. Числовая ось.
Совокупность всех чисел, лежащих между данными числами и называется интервалом или промежутком; концы и ему могут принадлежать, а могут и не принадлежать. Уточним это. Пусть
. Совокупность чисел , удовлетворяющих условию
, называется интервалом (в узком смысле) или открытым интервалом, обозначается символом
(рис.1.2).

Рис. 1.2. Интервал
Совокупность чисел таких, что
называется замкнутым интервалом (отрезок, сегмент) и обозначается через
; на числовой оси отмечается так:

Рис. 1.3. Замкнутый интервал
От открытого промежутка он отличается лишь двумя точками (концами) и . Но это отличие принципиальное, существенное, как увидим в дальнейшем, например, при изучении свойств функций.

Опуская слова «множество всех чисел (точек) x таких, что» и т. п., отметим далее:

и
, обозначается
и
полуоткрытые, или полузамкнутые, интервалы (иногда: полуинтервалы);

или
означает:
или
и обозначается
или
;

или
означает
или
и обозначается
или
;

, обозначается
множество всех действительных чисел. Значки
символы «бесконечности»; их называют несобственными или идеальными числами.

§1.3. Абсолютная величина (или модуль) действительного числа
Определение. Абсолютной величиной (или модулем) числа называется само это число, если
или
если
. Обозначается абсолютная величина символом . Итак,

Например,
,
,
.

Геометрически означает расстояние точки a до начала координат. Если имеем две точки и , то расстояние между ними можно представить как
(или
). Например,
то расстояние
.

Свойства абсолютных величин.

1. Из определения следует, что

,
, то есть
.

2. Абсолютная величина суммы и разности не превосходит суммы абсолютных величин:
.

1) Если
, то
. 2) Если
, то . ▲

3.
.

, тогда по свойству 2:
, т.е.
. Аналогично, если представить
,то придём к неравенству

4.
– следует из определения: рассмотреть случаи
и
.

5.
, при условии, что
Так же следует из определения.

6. Неравенство
,
, означает
. Этому неравенству удовлетворяют точки, которые лежат между
и
.

7. Неравенство
равносильно неравенству
, т.е. . Это есть интервал с центром в точке длины
. Он называется
окрестностью точки (числа) . Если
, то окрестность называется проколотой: это или
. (Рис.1.4).

8.
откуда следует, что неравенство
(
) равносильно неравенству
или
; а неравенство
определяет множество точек, для которых
, т.е. это точки, лежащие вне отрезка
, именно:
и
.

§1.4. Некоторые понятия, обозначения
Приведём некоторые широко применяемые понятия, обозначения из теории множеств, математической логики и других разделов современной математики.

1 . Понятие множества является одним из основных в математике, исходным, всеобщим – а потому не поддаётся определению. Его можно лишь описать (заменить синонимами): это есть собрание, совокупность каких-то объектов, вещей, объединённых какими-либо признаками. Объекты эти называются элементами множества. Примеры: множество песчинок на берегу, звёзд во Вселенной, студентов в аудитории, корней уравнения, точек отрезка. Множества, элементы которых суть числа, называются числовыми множествами . Для некоторых стандартных множеств вводятся специальные обозначения, например, N , Z , R - см. § 1.1.

Пусть A – множество и x является его элементом, тогда пишут:
; читается «x принадлежит A » (
знак включения для элементов). Если же объект x не входит в A , то пишут
; читается: «x не принадлежит A ». Например,
N ; 8,51N ; но 8,51R .

Если x является общим обозначением элементов множества A , то пишут
. Если возможно выписать обозначение всех элементов, то пишут
,
и т. п. Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается символом ; например, множество корней (действительных) уравнения
есть пустое.

Множество называется конечным , если оно состоит из конечного числа элементов. Если же какое бы натуральное число N ни взяли, во множестве A найдётся элементов больше, чем N, то A называется бесконечным множеством: в нём элементов бесконечно много.

Если всякий элемент множества ^ A принадлежит и множеству B , то называется частью или подмножеством множества B и пишут
; читается «A содержится в B » (
есть знак включения для множеств). Например, N Z R. Если и
, то говорят, что множества A и B равны и пишут
. В противном случае пишут
. Например, если
, а
множество корней уравнения
, то .

Совокупность элементов обоих множеств A и B называется объединением множеств и обозначается
(иногда
). Совокупность элементов, принадлежащих и A и B , называется пересечением множеств и обозначается
. Совокупность всех элементов множества ^ A , которые не содержатся в B , называется разностью множеств и обозначается
. Схематично эти операции можно изобразить так:

Если между элементами множеств можно установить взаимно-однозначное соответствие, то говорят, что эти множества эквивалентны и пишут
. Всякое множество A , эквивалентное множеству натуральных чисел N = называется счётным или исчислимым. Иначе говоря, множество называется счётным, если его элементы можно пронумеровать, расположить в бесконечную последовательность
, все члены которой различны:
при
, и его можно записать в виде . Прочие бесконечные множества называются несчётными . Счётными, кроме самого множества N, будут, например, множества
, Z. Оказывается, что множества всех рациональных и алгебраических чисел – счётные, а эквивалентные между собой множества всех иррациональных, трансцендентных, действительных чисел и точек любого интервала – несчётные. Говорят, что последние имеют мощность континуума (мощность – обобщение понятия количества (числа) элементов для бесконечного множества).

2 . Пусть есть два утверждения, два факта: и
. Символ
означает: «если верно , то верно и » или «из следует », « имплицирует есть корень уравнения обладает свойством от английского Exist – существовать.

Запись:

, или
, означает: существует (по крайней мере один) предмет , обладающий свойством . А запись
, или
, означает: все обладают свойством . В частности, можем записать:
и .

Видеоурок «Геометрический смысл модуля действительного числа» - наглядное пособие для урока математики по соответствующей теме. В видеоуроке детально и наглядно рассматривается геометрический смысл модуля, после чего на примерах раскрывается, как находится модуль действительного числа, причем решение сопровождается рисунком. Материал может быть использован на этапе объяснения новой темы в качестве отдельной части урока или обеспечения наглядностью объяснения учителя. Оба варианта способствуют повышению эффективности урока математики, помогают учителю достичь целей урока.

В данном видеоуроке присутствуют построения, которые наглядно демонстрируют геометрический смысл модуля. Чтобы демонстрация была более наглядной, эти построения выполняются с применением анимационных эффектов. Чтобы учебный материал легче запоминался, важные тезисы выделены цветом. Подробно рассматривается решение примеров, которое за счет анимационных эффектов подается структурировано, последовательно, понятно. При составлении видео были использованы инструменты, которые помогают сделать видеоурок эффективным современным инструментом обучения.

Виде начинается с представления темы урока. На экране выполняется построение - изображен луч, на котором отмечены точки aи b, расстояние между которыми отмечено как ρ(a;b). Напоминается, что расстояние измеряется на координатном луче вычитанием из большего числа меньшего, то есть для данного построения расстояние равно b-aдля b>aи равно a-b при a>b. Ниже демонстрируется построение, на котором отмеченная точка а лежит правее b, то есть соответствующее ей числовое значение больше b. Ниже отмечен еще один случай, когда положение точек aи b совпадает. В этом случае расстояние между точками равно нулю ρ(a;b)=0. Все вместе эти случаи описываются одной формулой ρ(a;b)=|a-b|.

Далее рассматривается решение задач, в которых применяются знания о геометрическом смысле модуля. В первом примере необходимо решить уравнение |х-2|=3. Отмечается, что это аналитическая форма записи данного уравнения, которую для поиска решения переводим на геометрический язык. Геометрически данная задача означает, что необходимо найти точки х, для которых будет верно равенство ρ(х;2)=3. На координатной прямой это будет означать равноудаленность точек х от точки х=2 на расстоянии 3. Чтобы продемонстрировать решение на координатной прямой, изображается луч, на котором отмечена точка 2. На расстоянии 3 от точки х=2 отмечаются точки -1 и 5. Очевидно, что данные отмеченные точки и будут решением уравнения.

Для решения уравнения |x+3,2|=2 предлагается привести его сначала к виду |a-b|, чтобы решить задание на координатной прямой. После преобразования уравнение получает вид |х-(-3,2)|=2. Это означает, что расстояние между точкой -3,2 и искомыми точками будет равно 2, то есть ρ(х;-3,2)=2. На координатной прямой отмечается точка -3,2. От нее на расстоянии 2 располагаются точки -1,2 и -5,2. Эти точки отмечаются на координатной прямой и указаны как решение уравнения.

Решение еще одного уравнения |x|=2,7 рассматривает случай, когда искомые точки располагаются на расстоянии 2,7 от точки 0. Уравнение переписывается в виде |x-0|=2,7. При этом указано, что расстояние до искомых точек определяется как ρ(х;0)=2,7. На координатной прямой отмечается начало отсчета точка 0. На расстоянии 2,7 от точки 0 размещаются точки -2,7 и 2,7. Эти точки отмечаются на построенной прямой, они и являются решениями уравнения.

Для решения следующего уравнения |x-√2|=0 не требуется геометрическая интерпретация, так как если модуль выражения равен нулю, это означает, что это выражение равно нулю, то есть x-√2=0. Из уравнения следует, что х=√2.

В следующем примере рассматривается решение уравнений, которые перед решением требуют преобразования. В первом уравнении |2x-6|=8 перед х есть числовой коэффициент 2. Чтобы избавиться от коэффициента и перевести уравнение на геометрический язык ρ(х;а)=b, выносим общий множитель за скобки, получая |2(x-3)|=2|x-3|. После этого правая и левая части уравнения сокращаются на 2. Получаем уравнение вида |x-3|=4. Данное уравнение аналитического вида переводится на геометрический язык ρ(х;3)=4. На координатной прямой отмечаем точку 3. От этой точки откладываем точки, расположенные на расстоянии 4. Решением уравнения будут точки -1 и 7, которые отмечаются на координатной прямой. Второе рассмотренное уравнение |5-3x|=6 также содержит числовой коэффициент перед переменной х. Чтобы решить уравнение, коэффициент 3 выносится за скобки. Уравнение принимает вид |-3(x-5/3)|=3|x-5/3|. Правая и левая части уравнения могут быть сокращены на 3. После этого получается уравнение вида |x-5/3|=2. Переходим от аналитической формы к геометрической интерпретации ρ(х;5/3)=2. К решению строится рисунок, на котором изображается координатная прямая. На этой прямой отмечается точка 5/3. На расстоянии 2 от точки 5/3 располагаются точки -1/3 и 11/3. Эти точки и являются решениями уравнения.

Последнее рассмотренное уравнение |4x+1|=-2. Для решения данного уравнения не требуется преобразований и геометрического представления. В левой части уравнения очевидно получается неотрицательное число, а правая часть содержит число -2. Поэтому данное уравнение не имеет решений.

Видеоурок «Геометрический смысл модуля действительного числа» может применяться на традиционном уроке математики в школе. Материал может стать полезным учителю, осуществляющему дистанционное образование. Подробное понятное объяснение решения заданий, в которых используется функция модуля, поможет освоить материал ученику, который осваивает тему самостоятельно.


















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

Оборудование: проектор, экран, персональный компьютер, мультимедийная презентация

Ход урока

1. Организационный момент.

2. Актуализация знаний учащихся.

2.1. Ответить на вопросы учащихся по домашнему заданию.

2.2. Разгадать кроссворд (повторение теоретического материала) (Слайд 2):

  1. Комбинация математических знаков, выражающая какое-нибудь
утверждение. (Формула. )
  • Бесконечные десятичные непериодические дроби. (Иррациональные числа)
  • Цифра или группа цифр, повторяющихся в бесконечной десятичной дроби. (Период. )
  • Числа, используемые для счета предметов. (Натуральные числа.)
  • Бесконечные десятичные периодические дроби. (Рациональные числа.)
  • Рациональные числа + иррациональные числа = ? (Действительные числа.)
  • – Разгадав кроссворд, в выделенном вертикальном столбце прочитайте название темы сегодняшнего урока. (Слайды 3, 4)

    3. Объяснение новой темы.

    3.1. – Ребята, вы уже встречались с понятием модуля, пользовались обозначением |a | . Раньше речь шла только о рациональных числах. Теперь надо ввести понятие модуля для любого действительного числа.

    Каждому действительному числу соответствует единственная точка числовой прямой, и, наоборот, каждой точке числовой прямой соответствует единственное действительное число. Все основные свойства действий над рациональными числами сохраняются и для действительных чисел .

    Вводится понятие модуля действительного числа. (Слайд 5).

    Определение. Модулем неотрицательного действительного числа x называют само это число: |x | = x ; модулем отрицательного действительного числа х называют противоположное число: |x | = – x .

    Запишите в тетрадях тему урока, определение модуля:

    На практике используют различные свойства модулей , например. (Слайд 6) :

    Выполнить устно № 16.3 (а, б) – 16.5 (а, б) на применение определения, свойства модуля. (Слайд 7) .

    3.4. Для любого действительного числа х можно вычислить |x | , т.е. можно говорить о функции y = |x | .

    Задание 1. Построить график и перечислить свойства функции y = |x | (Слайды 8, 9).

    Один ученик на доске строит график функции


    Рис 1 .

    Свойства перечисляются учащимися. (Слайд 10)

    1) Область определения – (– ∞; + ∞) .

    2) у = 0 при х = 0; y > 0 при x < 0 и x > 0.

    3) Функция непрерывная.

    4) у наим = 0 при х = 0, у наиб не существует.

    5) Функция ограничена снизу, не ограничена сверху.

    6) Функция убывает на луче (– ∞; 0) и возрастает на луче }