Астрономия относится к науке какой. Источники дидактики астрономии и связь ее с другими науками

Некоторое время в школьной программе вообще не было такого предмета, как астрономия. Сейчас же эта дисциплина входит в обязательный учебный курс. Астрономию начинают изучать в разных школах по-разному. Иногда эта дисциплина впервые появляется в расписании у семиклассников, а в некоторых учебных заведениях ее преподают только в 11 классе. У школьников возникает вопрос о том, зачем нужно учить этот предмет, астрономию? Давайте узнаем, что это за наука и как знания о космосе могут пригодиться нам в жизни?

Понятие науки астрономии и предмета её изучения

Астрономия - это естественная наука о Вселенной. Предметом её изучения являются космические явления, процессы и объекты. Благодаря этой науке мы знаем, планеты, спутники, кометы, астероиды, метеориты. Также астрономические знания дают понятие о космосе, расположении небесных тел, их движении и образовании их систем.

Астрономия - это та наука, которая объясняет непонятные явления, составляющие неотъемлемую часть нашей жизни.

Зарождение и развитие астрономии

Самые первые представления человека о Вселенной были очень примитивными. Они основывались на религиозных убеждениях. Люди думали, что Земля - это центр мироздания, и что к твёрдому небу крепятся звёзды.

В дальнейшем развитии этой науки выделяют несколько этапов, каждый из которых называют астрономической революцией.

Первый такой переворот происходил в разное время в различных регионах мира. Приблизительное начало его осуществления - 1500 лет до нашей эры. Причиной первой революции стало развитие математических знаний, а результатом - возникновение сферической астрономии, астрометрии и точных календарей. Основное достижение этого периода - возникновение геоцентрической теории мира, ставшей итогом античных знаний.

Вторая революция в астрономии происходила в период с XVI по XVII век. Она была вызвана бурным развитием естественных наук и появлением новых знаний о природе. В этот период для объяснения астрономических процессов и явлений стали использоваться законы физики.

Главные достижения данного этапа развития астрономии - это обоснование и всемирного тяготения, изобретение оптического телескопа, открытие новых планет, астероидов, возникновение первых космологических гипотез.

Далее развитие науки о космосе ускорилось. Была изобретена новая техника, помогающая в астрономических исследованиях. Появившаяся возможность изучения химического состава небесных тел, подтвердила единство всего космического пространства.

Третья астрономическая революция происходила в 70-90-х годах ХХ столетия. Обусловлена она была прогрессом техники и технологии. На этом этапе появляется всеволновая, экспериментальная и корпускулярная астрономия. Это значит, что теперь все объекты космоса могут рассматриваться с помощью излучаемых ими электромагнитных волн, корпускулярного излучения.

Подразделы астрономии

Как мы видим, астрономия - это древняя наука, и в процессе долгого развития она приобрела разветвлённую, отраслевую структуру. Концептуальную основу классической астрономии составляют три её подраздела:

Помимо этих основных разделов существуют ещё:

  • астрофизика;
  • звёздная астрономия;
  • космогония;
  • космология.

Новые течения и современные направления в астрономии

В последнее время в связи с ускорением развития многих наук стали появляться прогрессивные отрасли, занимающиеся довольно специфическими исследованиями в области астрономии.

  • Гамма-астрономия исследует космические объекты по их излучению.
  • Рентгеновская астрономия аналогично предыдущей отрасли берёт за основу исследований рентгеновские лучи, которые исходят от небесных тел.

Основные понятия в астрономии

Что же является базовыми понятиями этой науки? Для того чтобы мы могли глубже изучать астрономию, нужно ознакомиться с основами.

Космос - это совокупность звёзд и межзвёздного пространства. По сути, это и есть Вселенная.

Планета - это специфическое небесное тело, которое вращается по орбите вокруг звезды. Такое название дают только тяжеловесным объектам, которые способны приобретать округлую форму под воздействием собственной гравитации.

Звезда - это массивный шарообразный объект, состоящий из газов, внутри которого происходят термоядерные реакции. Самой близкой и известной звездой для нас является Солнце.

Спутник в астрономии — это небесное тело, вращающееся вокруг объекта, который больше по размеру и удерживается гравитацией. Спутники бывают естественными - например Луна, а также искусственно созданными человеком и запущенными на орбиту для трансляции необходимой информации.

Галактика - это гравитационная связка звёзд, их скоплений, пыли, газа и тёмной материи. Все объекты галактики движутся относительно её центра.

Туманность в астрономии - это межзвёздное пространство, которое имеет характерное излучение и выделяется на общем фоне неба. До появления мощных телескопических приборов галактики часто путали с туманностями.

Склонение в астрономии - это характеристика, присущая каждому небесному телу. Так называют одну из двух координат, отражающую угловое расстояние от космического экватора.

Современная терминология науки астрономии

Инновационные методы изучения, о которых шла речь раньше, способствовали появлению новых астрономических терминов:

«Экзотические» объекты - источники оптического, рентгеновского, радио- и гамма- излучений в космосе.

Квазар - простыми словами, это звезда, обладающая сильным излучением. Её мощность может быть больше, чем у целой галактики. Такой объект мы видим в телескоп даже на огромном расстоянии.

Нейтронная звезда - последняя стадия эволюции небесного тела. Этот имеет невообразимую плотность. Для примера, вещество, из которого состоит нейтронная звезда, умещающееся в чайной ложке, будет весить 110 миллионов тонн.

Связь астрономии с другими науками

Астрономия - это наука, которая тесно связана с различными знаниями. В своих исследованиях она пользуется достижениями многих отраслей.

Проблематика распространения на Земле и в космосе химических элементов и их соединений - вот связующее звено между химией и астрономией. Кроме того, у учёных большой интерес вызывают исследования химических процессов, происходящих в космических просторах.

Земля может рассматриваться как одна из планет Солнечной системы - в этом выражается связь астрономии с географией и геофизикой. Рельеф земного шара, происходящие климатические и сезонные изменения погоды, потепления, ледниковые периоды - для изучения всех этих и ещё многих явлений географы используют астрономические знания.

Что стало основой для зарождения жизни? Это вопрос общий для биологии и астрономии. Общие труды двух указанных наук направлены на решение дилеммы возникновения живых организмов на планете Земля.

Ещё более тесная взаимосвязь астрономии с экологией, которая рассматривает проблему влияния космических процессов на биосферу Земли.

Способы наблюдений в астрономии

Основой для сбора информации в астрономии является наблюдение. Какими же способами можно наблюдать за процессами и объектами в космосе и какой инструментарий сейчас применяется для этих целей?

Невооружённым взглядом мы можем заметить на небосклоне несколько тысяч звёзд, но иногда кажется, что мы видим целый миллион или миллиард светящихся ярких точек. Это зрелище само по себе захватывающее, хотя с помощью увеличивающих приборов можно заметить больше интересного.

Даже обычный бинокль с возможностью восьмикратного увеличения даёт шанс увидеть несметное количество небесных тел, а обычные звёзды, которые мы видим и невооружённым взглядом, становятся намного ярче. Самый интересный объект для созерцания в бинокль - это Луна. Уже при небольшом увеличении можно увидеть некоторые кратеры.

Телескоп же даёт возможность увидеть не просто пятна морей на Луне. Наблюдая за звёздным небом с помощью этого прибора, можно изучить все особенности рельефа земного спутника. Также взору наблюдателя открываются невидимые до этого момента отдалённые галактики и туманности.

Созерцание звёздного неба в телескоп - не только очень увлекательное занятие, но иногда и достаточно полезное для науки. Многие астрономические открытия совершались не исследовательскими институтами, а простыми любителями.

Значение астрономии для человека и общества

Астрономия - это наука интересная и полезная одновременно. В наше время астрономические методы и инструменты используются для:


Вместо послесловия

Учитывая всё вышесказанное, усомниться в полезности и необходимости астрономии не сможет никто. Эта наука помогает лучше понять все аспекты существования человека. Она дала нам знания о и открыла доступ к интересной информации.

С помощью астрономических исследований мы можем детальнее изучить свою планету, а также постепенно продвигаться вглубь Вселенной, чтобы узнавать всё больше об окружающем нас пространстве.

Астрономия, пожалуй, самая интересная наука из всех школьных предметов. Ах, как жаль, что ей отводится так мало часов для изучения.

Слово "астрономия" происходит от греческого: astron - звезда и nomos - закон , - это наука о строении и развитии космических тел, систем и Вселенной в целом .

Астрономия - древнейшая наука. Рождение астрономии было связано с отказом от геоцентрической системы мира (разработанную Птолемеем, во 2 веке) и заменой ее гелиоцентрической системой (автором которой является Николай Коперник, середина 16 века), с началом телескопических исследований небесных тел (Галилео Галилей, начало 17 века) и открытием закона всемирного тяготения (Исаак Ньютон, конец 17 века).

18-19 века были для астрономии периодом накопления данных о Солнечной системе, Галактике и физической природе звезд, Солнца, планет и других космических тел.

В 20 веке стала развиваться внегалактическая астрономия. Исследование спектров галактик позволило Э. Хабблу (1929) обнаружить общее расширение Вселенной, предсказанное А. А. Фридманом (1922) на основе теории тяготения, созданной А. Эйнштейном в 1915-16 годах. Создание оптических и радиотелескопов с высоким разрешением, применение ракет и искусственных спутников Земли для внеатмосферных астрономических наблюдений привели к открытию целого ряда новых видов космических тел: радиогалактик, квазаров, пульсаров, источников рентгеновского излучения и др. Были разработаны основы теории эволюции звезд и космогонии Солнечной системы. Крупнейшим достижением астрофизики 20 века стала релятивистская космология - теория эволюции Вселенной в целом.

Наука астрономия состоит из следующих разделов:

  • Сферическая астрономия - раздел астрономии, разрабатывающий математические методы решения задач, связанных с изучением видимого расположения и движения космических тел на небесной сфере.
  • Практическая астрономия - учение об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений.
  • Астрофизика - раздел астрономии, изучающий физическое состояние и химический состав небесных тел и их систем, межзвездной и межгалактической сред, а также происходящие в них процессы. Основные разделы астрофизики:
    • физика планет и их спутников
    • физика Солнца
    • физика звездных атмосфер
    • межзвездной среды
    • теория внутреннего строения звезд и их эволюции
  • Небесная механика - раздел астрономии, изучающий движения тел Солнечной системы в их общем гравитационном поле. К проблемам Небесной механики относится рассмотрение общих вопросов движения небесных тел в гравитационном поле и движения конкретных объектов (планет, искусственных спутников Земли и т. д.); определение значений астрономических постоянных; составление эфемерид.
  • Звездная астрономия - раздел астрономии, исследующий общие закономерности строения, состава, динамики и эволюции звездных систем (скоплений и галактик).
  • Внегалактическая астрономия - раздел астрономии, в котором изучаются космические тела (звезды, галактики, квазары и др.), находящиеся за пределами нашей звездной системы - Галактики.
  • Космогония - раздел астрономии, изучающий происхождение и развитие космических тел и их систем (планет и Солнечной системы в целом, звезд, галактик).
  • Космология - физическое учение о Вселенной как целом, основанное на результатах исследования наиболее общих свойств той части Вселенной, которая доступна для астрономических наблюдений. Общие выводы космологии имеют важное общенаучное и философское значение. В современной космологии наиболее распространена модель горячей Вселенной, согласно которой в расширяющейся Вселенной на ранней стадии развития вещество и излучение имели очень высокую температуру и плотность. Расширение привело к их постепенному охлаждению, образованию атомов, а затем (в результате гравитационной конденсации) - протогалактик, галактик, звезд и других космических тел.

Источники дидактики астрономии и связь ее с другими науками

Источники дидактики астрономии как науки: методологической основой дидактики астрономии является диалектико-материалистическая теория познания, учение об обучении и воспитании; теория развивающего обучения; психологическая теория деятельности и современная теория формирования научных понятий; идея системного подхода в обучении и дидактические принципы единства обучения, воспитания и развития, научности и систематичности, сознательности и творческой активности учащихся, наглядности, прочности усвоения знаний и всестороннего развития познавательных сил учащихся.

Поскольку процесс учебного познания является отражением научного познания, дидактика астрономии связана с общественными, гуманитарными и естественно-математическими науками.

Связь дидактики астрономии с философией обусловлена тем, что астрономия как наука имеет не только специальный, но и общечеловеческий, гуманитарный аспект, вносит наибольший вклад в выяснение места человека и человечества во Вселенной, в изучение отношения "человек - Вселенная". Астрономия отвечает на ряд коренных, мировоззренческих вопросов. Важнейшей задачей преподавания астрономии является формирование научного мировоззрения учащихся, развитие у них естественнонаучного стиля мышления и понятия о физической картине мира как синтеза астрономических, физических и философских понятий и идей. В обучении астрономии нельзя обойтись без философских обобщений. В процессе обучения астрономии учащиеся должны постепенно знакомиться с тем, как строится научное познание, с методами науки и законами научного познания, что также требует возвращения к проблемам философского характера, поскольку исследование особенностей, законов, общих методов познания - предмет философии.

При исследовании любых объектов познания астрономии можно наблюдать проявление основных, фундаментальных законов, хотя по ряду причин (возрастные особенности учащихся, ограниченность учебного времени и т.д.) не все они пригодны для демонстрации действия этих законов во Вселенной в ходе обучения астрономии в общеобразовательной школе; учитель должен выбирать те из них, в которых действие законов философии проступает наиболее зримо.

Из философских принципов при изучении астрономии в школе следует раскрывать те, которые: 1) проявляются при рассмотрении ряда объектов познания астрономии, изучаемых в курсе, и органически связаны с учебным материалом; 2) необходимы для более глубокого и правильного понимания сущности астрономических законов и теорий, космических объектов, процессов и явлений; 3) логичнее всего раскрываются при изложении астрономического материала, а не в ходе изучения других учебных дисциплин.

При определении круга философских обобщений, которые могут и должны быть сделаны в процессе изучения астрономии, нужно исходить из принципов:
1. Учета мировоззренческой значимости философского положения и его места в логике философии.
2. Учета связи философского принципа (положения) с содержанием курса и его роли в понимании астрономического материала.
3. Учета доступности.

В основании формируемой в сознании учащихся научной картины мира должны лежать также философские положения: материальности мира; связи материи и движения; несотворимости и неуничтожимости материи и движения; существования движущейся материи в пространстве и времени; понятия пространства и времени; многообразия и качественного своеобразия форм материи и взаимосвязи между ними; материальном единстве мира; Вселенной. Весь курс астрономии с самого начала должен изучаться под углом зрения этих положений. Учащиеся должны знакомиться с ними с первых уроков астрономии для обеспечения материалистического истолкования всех изучаемых в курсе объектов познания астрономии. Широта и общность этих понятий требует обобщений широкого и разностороннего материала, охватывающего ряд разделов курса астрономии, базирующихся на философских положениях, исходящих из закона единства и борьбы противоположностей, закона перехода количественных изменений в качественные, положениях о несотворимости и неуничтожимости материи, о роли практики в познании, о конкретности и относительности истины, которые можно раскрыть лишь после того, как на уроках будут рассмотрены те объекты познания астрономии, в которых проявляется (подтверждается) их действие.

К пониманию чрезвычайно широких и общих философских принципов познаваемости мира, объективности знания, взаимосвязи и взаимообусловленности явлений, о материальном единстве мира учащиеся подводятся постепенно, по мере изучения курсов астрономии и физики.

Каждое философское положение должно рассматриваться на уроке не во всей его полноте всеобщности, а как естественное обобщение того конкретного астрономического материала, из которого оно вытекает. Философские выводы должны выступать перед учащимися как наиболее общие закономерности, обнаруживаемые в процессе познания природы и в самой природе.

Психология раскрывает закономерности психической деятельности учащихся в процессе обучения, объясняет восприятие ими окружающего мира, особенности мышления и овладения знаниями, умениями и навыками; пути формирования устойчивых познавательных интересов и склонностей. Данные возрастной психологии и психологии обучения учитываются при построении курса астрономии, выборе методов для каждого этапа обучения, определения места и отношения теории и практики и т.д.

Данные физиологии учитываются при построении учебного процесса с учетом возрастных особенностей организма учащихся.

Как один из разделов общей педагогики, дидактика астрономии имеет неразрывную связь с другими педагогическими науками.

Неразрывная связь дидактики астрономии с общей педагогикой и теорией образования и обучения обусловлена тем, что дидактика астрономии сама является лишь одной из областей (отраслей) педагогики, исследующей процесс обучения основам одной из конкретных естественно-математических наук на основе совокупности теорий образования, воспитания и развития подрастающего поколения, рассматривающих основные, наиболее общие и важные проблемы познавательной деятельности людей, и положения и закономерности, свойственные процессу обучения для всех учебных дисциплин.

Связь дидактики астрономии с дидактиками других естественно-математических учебных дисциплин обусловлена сложными, многообразными, постоянно углубляющимися связями между самими науками.

Растущая взаимосвязь астрономии с другими естественно-математическими науками обусловлена современными тенденциями в развитии познания окружающего мира, разрастанию и укреплению "межнаучных" связей и ликвидации монополизма на исключительно "свои" объекты науки с использованием собственных специфических методов исследования.

По мере развития науки происходит углубление и расширение процесса познания. Наука стремится к всестороннему изучению всех своих объектов и установлению всеобщей связи процессов и явлений в единстве с окружающим миром.

Наиболее тесно астрономия связана с физикой.

Астрономия использует физические знания для объяснения космических явлений и процессов, установления природы и основных характеристик и свойств космических объектов и их систем. Уровень современных физических знаний достаточен для объяснения большинства явлений и процессов в макро- и микромире, основанных на взаимодействиях атомных ядер, электронных оболочек атомов и квантов электромагнитного излучения - с их помощью во Вселенной можно объяснять возникновение, состав, строение, энергетику, движение, эволюцию и взаимодействие звезд, туманностей, планетных тел и их систем.

Физика использует данные астрономических наблюдений для корректировки известных физических законов и теорий; открытия новых физических явлений, процессов и закономерностей; экспериментального подтверждения законов и теорий; исследования принципиально не воспроизводимых или трудновоспроизводимых в земных лабораториях физических объектов, явлений и процессов (термоядерные реакции, поведение горячей плазмы в магнитном поле, эффекты релятивистской теории и т.д.).

На этой основе быстро развивается процесс интеграции физики и астрономии, объединенных в астрофизику. Предметами изучения в современной астрофизике и физике элементарных частиц стала область субъядерных взаимодействий, некоторые аспекты взрывов звезд, активности галактических ядер и квазаров, нейтронные звезды и черные дыры, проблема "скрытой массы", сингулярности и осцилляций Вселенной. Создается единый понятийный аппарат: астрофизические понятия, являясь понятиями астрономическими, в то же время могут рассматриваться как физические, отнесенные к космическим объектам, явлениям и процессам. Физика высоких энергий и космология совместно разрабатывают теорию Великого объединения, сводящую виды физических взаимодействий к единому началу и объясняющую антропный принцип и перспективы развития материального мира в целом.

Взаимодействие этих наук привело к коренному изменению многих прежних способов применения астрономических знаний. Так, например, необходимость в точном определении моментов и промежутков времени стимулировала развитие астрономии и физики; вплоть до середины ХХ века астрономические способы измерения, хранения времени и его эталоны лежали в основе мировой Службы Времени; в настоящее время развитие физики привело к созданию более точных способов определения и эталонов времени, которые стали использоваться астрономами для исследования явлений, лежавших в основе прежних способов измерения времени. До середины ХХ века основными способами определения географических координат местности, морской и сухопутной навигации были астрономические наблюдения. С появлением радиофизики и космонавтики, широким применением радиосвязи и навигационных спутников в астрономических методах нужда в какой-то мере отпала, и сейчас вышеупомянутые разделы физики и технологии позволяют астрономам и географам уточнять фигуру и некоторые другие характеристики Земли.

Взаимодействие астрономии и физики продолжает оказывать влияние на развитие других наук, технологии, энергетики и различных отраслей народного хозяйства; наиболее известным, хрестоматийным примером стало создание и развитие космонавтики.

Вышесказанное обусловило теснейшую связь дидактики астрономии и методики преподавания физики - теории и практики обучения физике в средних и высших учебных заведениях: часть учебного материала изучается в рамках обеих учебных дисциплин; предметы изучения частично перекрываются; много общего в методах изложения и контроля за усвоением учебного материала.

Межпредметные связи и проблемы интеграции астрономии и физики в средних учебных заведениях рассматривались в работах Р.Я. Ерохиной, Д.Г. Кикина, А.Ю. Румянцева, Е.К. Страута и многих других ученых [ ; ; ; ; и т.д.].

Межпредметные связи курсов астрономии и математики исторически обусловлены их глубоким взаимным развивающим влиянием, необходимостью и результативностью широчайшего применения в науке математических знаний, математических способов обработки информации.

Пропедевтика астрономических знаний в школе начинается на уроках математики в I классе при формировании представлений о способах и единицах измерения времени, календарях. Элементы астрономии обогащают курс математики, демонстрируют универсальность математических методов, увеличивают интерес учащихся к изучению математики. Решение задач с астрономическим содержанием позволяет сделать их более наглядными, доступными и интересными.

Умения и навыки, приобретенные при изучении математики, используются в курсе астрономии (применение приемов приближенных вычислений при решении задач и проведении расчетов, оценивающих порядок величины; замена тригонометрических функций малых углов значениями самих углов в радианной мере; пользование логарифмической шкалой; использование калькуляторов и персональных компьютеров и т.д.).

Математическая подготовка учащихся выпускных классов вполне достаточна для успешного формирования понятий разделов классической астрономии и позволяет усваивать знания по астрофизике и космологии; особенности построения и содержания курса математики средней школы позволяют изучать в его рамках ряд вопросов сферической астрономии и астрофотометрии (небесная сфера; время и календарь; определение небесных и географических координат; определение блеска, светимости и абсолютной звездной величины звезд; измерение космических расстояний и размеров космических тел и т.д.).

Межпредметные связи курсов астрономии и математики довольно подробно рассматривались в работах А.И. Фетисова, О.М. Лебедевой и других ученых [ ; ; и др.].

Астрономию и химию связывают вопросы происхождения и распространенности химических элементов и их изотопов в космосе, химическая эволюция Вселенной. Возникшая на стыке астрономии, физики и химии наука космохимия тесно связана с астрофизикой, космогонией и космологией, изучает химический состав и дифференцированное внутреннее строение космических тел, влияние космических явлений и процессов на протекание химических реакций, законы распространенности и распределения элементов в Метагалактике, сочетание и миграция атомов при образовании вещества в космосе, эволюция изотопного состава элементов. Большой интерес для химиков представляют исследования химических процессов, которые из-за их масштабов или сложности трудно или совсем не воспроизводимы в земных лабораториях (вещество в недрах планет, синтез сложных химических соединений в темных туманностях и т.д.).

В основе межпредметных связей астрономии и химии в средней школе лежит изучение вещества.

Учитель астрономии может использовать усвоенные при изучении химии сведения о свойствах различных химических соединений, составе и строении веществ и т.д., расширяя возможности применения знаний в различных ситуациях для более глубокого усвоения отдельных понятий и закономерностей. Многообразие астрономических явлений может использоваться для демонстрации и объяснения различия между физическими и химическими явлениями, наиболее заметными на примере изучения плазмы, - состояния вещества, наиболее распространенного в Метагалактике.

Можно предложить опережающее изучение в курсе химии астрономического материала о возникновении химических элементов; о термоядерных реакциях и образовании тяжелых химических элементов в недрах звезд; эволюции вещества в Метагалактике; реакциях синтеза сложных органических соединений в туманностях; о распространенности химических элементов, их изотопов и химических соединений в космосе; о химии Солнечной системы: составе Солнца и планетных тел; внутреннем строении Земли и планет, сложных химических реакциях, протекающих в их недрах под действием высоких давлений и температур; кометах; парниковом эффекте в атмосферах Земли и Венеры; образовании и химической эволюции атмосферы, гидросферы и литосферы Земли, роли в ней биогенных факторов и т.д.

Межпредметные связи курсов химии и астрономии рассматривались в работах Г.И. Осокиной и других ученых [ ; и др.].

Астрономию и физическую географию, а также геофизику связывает изучение Земли как одной из планет Солнечной системы, ее основных физических характеристик (фигуры, вращения, размеров, массы и т.д.) и влияние космических факторов на географию и геологию Земли: строение и состав земных недр и поверхности, рельеф и климат, периодические, сезонные и долговременные, местные и глобальные изменения в атмосфере, гидросфере и литосфере Земли; магнитные бури, приливы, смена времен года, дрейф магнитных полей, потепления и ледниковые периоды и т.д., возникающие в результате воздействия космических явлений и процессов (солнечной активности, вращения Земли вокруг оси и вокруг Солнца, вращения Луны вокруг Земли и др.); а также не потерявшие своего значения астрономические методы ориентации в пространстве и определения координат местности. Одной из новых наук стало космическое землеведение - совокупность инструментальных исследований Земли из космоса в целях научной и практической деятельности.

Межпредметные связи астрономии и географии в российской школе имеют глубокие исторические традиции. Главной целью развития астрономических знаний в России и основной деятельностью русских астрономов ХVШ - XIX века было их применение для улучшения картографии, требующее знаний, умений и навыков проведения астрономических наблюдений, на основе которых определяются горизонтальные и экваториальные небесные координаты светил и точное время; о целенаправленности обучения говорит само название учебной дисциплины - "математическая география". До начала 50-х годов нашего века до 30 - 40% школьных учителей астрономии были выпускниками естественно-географических факультетов пединститутов; астрономическая подготовка учителей географии была прекращена в 1971 году.

Поскольку в настоящее время в средней общеобразовательной школе изучение курса физической географии значительно опережает изучение астрономии, следует использовать межпредметные связи наук для пропедевтики астрономических (в основном астрометрических) знаний в среднем звене: помимо материала о некоторых физических характеристиках, внутреннем строении, рельефе, гидросфере и атмосфере Земли, в курсе географии рассматриваются отдельные стороны развития литосферы и методы определения возраста горных пород, что имеет определенное отношение к космогонии; влияние отдельных космических явлений на земные процессы и явления; предусматривается проведение наблюдений ряда небесных явлений: восхода, захода и полуденной высоты Солнца, фаз Луны, обучение ориентации на местности по Солнцу. При изучении астрономии ряд понятий курса географии актуализируется, повторяется, обобщается и закрепляется на новом более высоком уровне при использовании объяснения природы небесных явлений, порожденных вращением Земли вокруг своей оси и вокруг Солнца (условия видимости светил на разных широтах, часовые пояса, местное и декретное время, смена времен года и т.д.); при изучении материала о Земле, как одной из планет Солнечной системы и основных физических характеристик, внутреннего строения, рельефа, физических условий на поверхности планетных тел; теории формирования планетных систем.

Связь астрономии и биологии определяется их эволюционным характером. Астрономия изучает эволюцию космических объектов и их систем на всех уровнях организации неживой материи аналогично тому, как эволюция живой материи изучается биологией. Все космические объекты и их системы, подобно биологическим, эволюционируют с характерными для них шкалами времени. Эволюция неживой материи идет "от простого к сложному". Существование и развитие объектов обусловлено внутренними динамическими процессами; движущими факторами эволюции являются расширение Метагалактики (Вселенной) и гравитационная неустойчивость. Взаимосвязь астрономии и биологии обусловлена взаимным влиянием эволюций неживой и живой природы.

Все остальные естественные науки не являются в полной мере эволюционными: они претерпевают изменения лишь в свете развития идей и понятийного аппарата, методов и инструментов исследований, позволяющих расширять и углублять наши знания об объектах познания данных наук, но сами материальные объекты при всем богатстве их взаимных связей не эволюционируют: действие фундаментальных законов физики извечно и не зависит от времени, необратимые процессы исследуются лишь в некоторых разделах физики (термодинамике и т.д.); законы химии также обратимы и могут рассматриваться как описание физических взаимодействий электронных оболочек атомов; география и геология, в самом широком смысле, являются разделами астрономических наук планетологии и планетографии.

Межпредметные связи курсов астрономии и биологии можно подразделить на несколько уровней.

При осуществлении уровня базовых знаний в изложении материала темы происходит непосредственное смыкание основного содержания обоих предметов. Таких точек соприкосновения сравнительно немного: тема "Происхождение жизни на Земле" предполагает определенный уровень знаний о Земле как планете, а также об образовании и развитии Земли как космического тела. Другими точками соприкосновения являются разделы темы "Экология" - "Факториальная экология", в котором рассматриваются космические факторы как экологические, и "Учение о биосфере", где рассматривается биосфера как открытая система, для существования которой необходим определенный поток энергии из космоса.

Вопросами, объяснение которых требует совместных усилий астрономов и биологов, являются:

1. Возникновение и существование жизни во Вселенной (экзобиология: происхождение, распространенность, условия существования и развития жизни, пути эволюции).
2. Процессы и явления, лежащие в основе космическо-земных связей.
3. Практические вопросы космонавтики (космическая биология и медицина).
4. Космическая экология.
5. Возникновение и существование, пути развития внеземных цивилизаций (ВЦ), проблемы контакта с ВЦ.
6. Роль человека и человечества во Вселенной (возможность зависимости космической эволюции от биологической и социальной).

Некоторые из этих вопросов могут быть частично включены во второй уровень межпредметных связей - уровень расширенных знаний.

Особое внимание учащихся должно обращаться на следующие положения:

1. Возникновение жизни на Земле подготовлено ходом эволюции неживой материи во Вселенной.
2. Существование жизни на Земле определяется постоянством действия космических факторов: мощностью и спектральным составом солнечного излучения, неизменностью основных характеристик орбиты Земли и ее осевого вращения, наличием магнитного поля и атмосферы планеты.
3. Развитие жизни на Земле во многом обусловлено плавными незначительными изменениями космических факторов; сильные изменения ведут к катастрофическим последствиям (раздел "Генетика": космические лучи и их рассмотрение как мутагенных факторов).
4. На определенном этапе своего развития жизнь становится фактором космического масштаба, оказывающим влияние на физико-химические характеристики основных оболочек планеты (например, состав и температуру атмосферы, гидросферы и верхних слоев литосферы).
5. В настоящее время деятельность человечества становится фактором глобального геофизического и даже космического масштаба, оказывающим воздействие на атмосферу, гидросферу, литосферу Земли и околоземное космическое пространство, а в перспективе - на всю Солнечную систему. Экология становится космической.
6. Разумная деятельность сверхцивилизаций может оказывать влияние на эволюцию неживой и живой материи в масштабах Галактики и даже Метагалактики.

Астрономия изучает строение Вселенной, движение
небесных тел, их природу, происхождение и развитие.
По-гречески "астрон" - светило, "номос" - закон.

Туманности

Конская голова (созвездие
Ориона)
Туманность Ориона
Крабовидная туманность (созв. Тельца)

Астрономия – древнейшая наука.
Систематические астрономические наблюдения проводились тысячи лет тому назад.
Мегалиты древности
Солнечный камень ацтеков
Древняя обсерватория Стоунхендж
Солнечная обсерватория в Дели

Николай Коперник (1473 –1543)

Польский астроном, математик и экономист

1. Центр Земли - не центр вселенной, но
только центр масс и орбиты Луны.
2. Все планеты движутся по орбитам,
центром которых является Солнце, и
поэтому Солнце является центром мира.
3. Расстояние между Землёй и Солнцем
очень мало по сравнению с расстоянием
между Землёй и неподвижными звёздами.
4. Земля (вместе с Луной, как и другие
планеты), вращается вокруг Солнца, и
поэтому те перемещения, которые, как
кажется, делает Солнце (суточное
движение, а также годичное движение,
когда Солнце перемещается по Зодиаку)
- не более чем эффект движения Земли.

Джорда́но Бру́но
1548 – 1600
Итальянский философ

Телескоп Галилея
Два телескопа Галилея в
Музеи истории науки,
(Флоренция)
ГАЛИЛЕЙ Галилео (1564–1642),
итальянский ученый, в 1609 году
построил первый телескоп

Галилеевы спутники Юпитера (современные фотографии)

Галилей изобрёл:
гидростатические весы для определения
удельного веса твёрдых тел.
пропорциональный циркуль, используемый в
чертёжном деле.
первый термометр, ещё без шкалы.
усовершенствованный компас для применения
в артиллерии.
микроскоп, плохого качества (1612); с его
помощью Галилей изучал насекомых.
Занимался также оптикой, акустикой, теорией
цвета и магнетизма, гидростатикой,
сопротивлением материалов. Определил
удельный вес воздуха.

Ти́хо Бра́ге
14.12.1546 - 24.10.1601
Датский астроном, астролог и алхимик.

1. Первым в Европе начал проводить систематические
и высокоточные астрономические наблюдения.
2. В гелиоцентрическую систему мира Браге не верил и
называл её математической спекуляцией. Он предложил
свою компромиссную систему мира, которая представляла
собой комбинацию учений Птолемея и Коперника: Солнце,
Луна и звёзды вращаются вокруг неподвижной Земли, а все
планеты - вокруг Солнца.
3. В течение 16 лет Тихо Браге вёл непрерывные наблюдения
за планетой Марс. Материалы этих наблюдений существенно
помогли его преемнику - немецкому учёному И. Кеплеру -
открыть законы движения планет.
4. Составил новые точные солнечные таблицы и
уточнённый каталог 800 звёзд

Иоганн Кеплер
27.12.1571 – 15.11. 1630
Немецкий математик, астроном, оптик и астролог

Исаа́к Нью́тон
4.01.1643 - 31.03.1727
Великий английский физик, математик и астроном.

1. Автор фундаментального труда «Математические
начала натуральной философии», в котором он
описал закон всемирного тяготения и так
называемые Законы Ньютона, заложившие
основы классической механики.
2. Разработал дифференциальное и интегральное
исчисление, теорию цветности и многие другие
математические и физические теории.

Астрономия – всеволновая наука

Разделы астрономии

Астрометрия – наука об измерении пространства и
времени
Небесная механика- изучает законы движения
небесных тел под действием сил всемирного
тяготения, определяет массы и форму небесных тел
и устойчивость их систем
Астрофизика- изучает строение, физические
свойства и химический состав небесных объектов
Звездная астрономия - изучает движение и
распределение в пространстве звезд, газопылевых
туманностей и звездных систем, их структуру и
эволюцию, проблему их устойчивости
Космогония- рассматривает вопросы происхождения
и эволюции небесных тел
Космология- изучает общие закономерности
строения и развития Вселенной
Космонавтика - исследования космического
пространства при помощи автоматических и
пилотируемых космических аппаратов

как Солнце.
В темную безлунную ночь вдали от
городских огней хорошо видна
широкая полоса Млечного Пути
В состав нашей Галактики входят шаровые и рассеянные звездные скопления