Диаметр орбиты юпитера. Планета юпитер краткое описание

Каждым летним вечером, взглянув на небо в южной части, можно увидеть очень яркую звезду с красноватым или оранжевым оттенком. Это планета Юпитер – самая большая планета Солнечной системы.

Юпитер – король среди всех планет. Он находится на пятой по счету орбите, если считать от Солнца, и во многом мы обязаны ему своим спокойным существованием. Юпитер принадлежит к газовым планетам-гигантам, а его радиус больше земного в 11.2 раза. По массе же он почти в 2.5 раза тяжелее всех остальных планет, вместе взятых. У Юпитера 67 известных спутников, как очень маленьких, так и очень больших.

Так что Юпитер – самая большая планета, обладающая самой большой массой, самым сильным гравитационным полем, и самым большим влиянием в Солнечной системе. Кроме того, это один из наиболее простых и красивых объектов для наблюдений.

Конечно, говорить об открытии этой планеты некорректно, ведь планета Юпитер на небе выглядит как ярчайшая звезда. Потому и известен он с древних времен, и первооткрывателя здесь просто нет и быть не может.

Другое дело, что Галилео Галилей в 1610 году смог рассмотреть в свой примитивный телескоп четыре крупнейших спутника Юпитера, и это было открытие. Но это уже другая история, которая относится к спутникам. В дальнейшем их открыли еще не один десяток, как в телескопы, так и с помощью космических зондов.

Самая большая планета в Солнечной системе, несомненно, обладает выдающимися характеристиками. В самом деле, эта планета настолько не похожа на нашу крохотную Землю, что интересных фактов о Юпитере довольно много. Вот некоторые из них:

  • Планета Юпитер очень массивна. Её масса равна 318 земным. Даже если взять все остальные планеты и слепить их в один ком, и тогда Юпитер будет тяжелее его в 2.5 раза.
  • В объёме Юпитера поместилось бы 1300 таких планет, как Земля.
  • Гравитация на Юпитере больше земной в 2.5 раза.
  • Металлическое ядро Юпитера раскалено до 20 тысяч градусов.
  • Юпитер выделяет больше тепла, чем получает от Солнца.
  • Юпитер никогда не будет звездой, ему для этого не хватает массы. Чтобы в его недрах началась термоядерная реакция, Юпитеру нужно увеличить свою массу в 80 раз. Такого количества вещества в Солнечной системе не наберется, даже если собрать вместе все планеты, их спутники, астероиды, кометы, и весь мелкий мусор.
  • Юпитер — самая быстро вращающаяся планета в Солнечной системе. несмотря на огромные размеры, он делает полный оборот менее чем за 10 часов. Из-за быстрого вращения Юпитер заметно сплющен с полюсов.
  • Толщина облаков на Юпитере — всего около 50 км. Облачный слой выглядит очень мощно. Все эти огромные штормы и цветные полосы размером в тысячи километров на самом деле находятся в небольшом по толщин промежутке. Состоят они в основном из кристаллов аммиака — более светлые расположены ниже, а поднявшиеся вверх становятся темнее из-за солнечного излучения. Под облачным слоем располагается смесь водорода и гелия вплоть разной плотности вплоть до металлического состояния.
  • Большое Красное Пятно впервые обнаружил Джованни Кассини еще в 1665 году. Этот гигантский шторм существовал еще тогда, то есть ему уже как минимум 350-400 лет. Правда, за последние 100 лет он уменьшился вдвое, однако это самый большой и долгоживущий шторм в Солнечной системе. Другие штормы длятся всего несколько дней.
  • У Юпитера есть кольца, их открыли после всем известных колец Сатурна и гораздо меньших колец Урана. Кольца Юпитера очень слабые. Возможно, они образованы из вещества, которое было выброшено спутники при ударах метеоритов.
  • У Юпитера самое мощное магнитное поле среди всех планет, в 14 раз сильнее земного. Есть теория, что оно генерируется огромным металлическим ядром, вращающимся в центре планеты. Это магнитное поле ускоряет частицы солнечного ветра почти до скорости света. Поэтому около Юпитера есть очень мощные радиационные пояса, способные вывести из строя электронику космических аппаратов, из-за чего приближаться к нему близко опасно.
  • У Юпитера рекордное количество спутников — на 2018 год их было известно 79. Ученые считают, что их может быть гораздо больше и еще не все открыты. Некоторые размером с Луну, а некоторые — просто куски камня в несколько километров размером.
  • Спутник Юпитера Ганимед — самый крупный спутник в Солнечной системе. Его диаметр — 5260 км, что на 8% больше, чем даже у Меркурия и на 51% больше Луны. То есть это практически планета.
  • Юпитер своей гравитацией защищает нас от многих опасностей в виде комет и астероидов, отклоняя их орбиты. Он практически вычистил внутреннюю часть Солнечной системы, обеспечив нам достаточно свободное пространство. Кометы и астероиды, проникающие к нам, рано или поздно меняют свою орбиту под действием Юпитера на более округлые и безопасные для Земли.
  • Юпитер можно легко наблюдать. Это самая яркая звезда на земном небе после Венеры и Луны. Уже в 8-10-кратный бинокль можно увидеть 4 его галилеевых спутника. А в небольшой телескоп Юпитер виден как диск, и можно даже рассмотреть на нём пояса.

Как видите, планета Юпитер — не какой-то там обычный газовый шар. Это целый мир, который имеет немало тайн и загадок, которые ученые постепенно разгадывают. По сути, эта планета со своими спутниками — миниатюрная Солнечная система, где существуют десятки собственных уникальных миров. Если вам интересно, можете еще узнать немало интересного о Юпитере из небольшого видео:

Расстояние от Юпитера до Солнца

Орбита планеты Юпитер расположена от Солнца гораздо дальше, чем земная. Если от Земли до Солнца примерно 150 миллионов километров, или 1 астрономическая единица, то до Юпитера оно составляет в среднем 778 миллионов километров, или 5.2 а.е. Орбита Юпитера не сильно отличается от круговой, разница в расстоянии от Солнца в самой ближней и самой дальней точке составляет 76 миллионов километров.

Год на Юпитере длится 11.86 земных лет — столько времени требуется этой планете для одного оборота вокруг Солнца. При этом раз в 13 месяцев Юпитер оказывается на одной линии с Землей, и расстояние между ними минимально — это называется противостоянием. В это время наблюдать Юпитер лучше всего.

Раз в 13 лет случаются Великие противостояния Юпитера, когда эта планета, к тому же, оказывается не только напротив Земли, но и в ближайшей точке своей орбиты. Это наилучшее время, когда каждый астроном, как профессиональный, так и любитель, наводит на эту планету свой телескоп.

Планета Юпитер имеет очень небольшой наклон, всего около 3 градусов, и времена года там не меняются.

Характеристики планеты Юпитер

Юпитер – весьма любопытная планета, которая имеет мало общего с привычными нам вещами.

Радиус – около 70 тысяч километров, что больше радиуса Земли в 11.2 раза. На самом деле этот газовый шар из-за своего быстрого вращения имеет довольно сплющенную форму, потому радиус по полюсам у него около 66 тысяч километров, а по экватору – 71 тысяча километров.

Масса – в 318 раз больше массы Земли. Если собрать все планеты, комета, астероиды и прочие тела Солнечной системы в одну кучу, то и тогда Юпитер будет в 2.5 раза тяжелее этой кучи.

Время вращения на экваторе – 9 часов 50 минут 30 секунд. Да, этот гигантский шар делает полный оборот вокруг оси менее, чем за 10 часов, именно такая там длительность суток. Но это газовый шар, а не твердый, и он вращается подобно жидкости. Поэтому в средних широтах скорость вращения другая, оборот там происходит за 9 часов 55 минут 40 секунд. Так что продолжительность суток зависит от места. Кроме того, мы можем отслеживать вращение планеты лишь по облакам в верхних слоях атмосферы, а не по поверхностным ориентирам, которых там нет, как нет и самой поверхности.

Площадь поверхности – в 122 раза больше земной, вот только поверхность эта не твердая, и приземлиться там негде совершенно. Да и четкой её границы нет. При спуске на Юпитер газ будет просто сгущаться под давлением — сначала это будет просто газовая атмосфера, затем что-то подобное очень насыщенному туману, плавно перетекающего в совершенно жидкую среду.

Магнитное поле планеты Юпитер в системе – самое мощное, оно в 14 раз сильнее земного. Радиация от него такова, что даже космические зонды не могут длительное время её выдержать без поломок оборудования.

Атмосфера Юпитера, по крайней мере, верхние её слои, состоят преимущественно из водорода (90%) и гелия (10%). Имеются в ней и метан, сероводород, аммиак, вода и другие примеси. Глубокие слои пока не удалось исследовать достаточно достоверно. Красный фосфор и его соединения преимущественно и придают Юпитеру его красный вид. Полюбуйтесь виртуальными устрашающе красивыми видами атмосферы планеты Юпитер:

Ядро Юпитера имеет температуру порядка 3000 К и состоит из расплавленного металла, в частности, металлического водорода. Размер ядра больше Земли.

Ускорение свободного падения на планете Юпитер составит примерно 2.5g.

Что ожидало бы наблюдателя, рискнувшего приблизиться к Юпитеру? Сначала это были бы замечательные виды планеты, спутников, возможно, удалось бы даже увидеть кольца планеты. Затем, при приближении к планете нашего смельчака убила бы радиация. Если же его бренное тело не останется на вечной орбите и войдет-таки в атмосферу, то там его ожидает огонь, огромное давление, и долгое падение того, что останется. А возможно, это будет не падение, а ношение остатков по воле урагана, пока химический состав атмосферы не разложит их на отдельные молекулы.

Большое красное пятно Юпитера

Одно из любопытнейших явлений Юпитера, которое можно наблюдать уже в средний телескоп – Большое красное пятно, которое видно на поверхности планеты, и которое вращается вместе с ней. Размеры его (они непостоянны) – примерно 40 тысяч километров в длину и 13 тысяч километров в ширину – вся Земля вместилась бы в этот гигантский ураган!

Сравнительные размеры Большого красного пятна на Юпитере.

Наблюдения за этим явлением ведутся уже 350 лет, и с тех пор пятно не исчезло. Долгое время считалось, что это нечто твердое на поверхности планеты, но «Вояджер-1» в 1979 году сделал детальные снимки Юпитера и внес ясность в этот вопрос. Оказалось, что Большое красное пятно – не что иное, как атмосферный вихрь! И это самый большой ураган в Солнечной системе, который люди видят вот уже 350 лет, а сколько он существует вообще, никому не известно. Хотя за последние 100 лет размер пятна стал вдвое меньше.

Оборот пятна вокруг своей оси составляет 6 часов, и вместе с тем оно вращается вместе с планетой.

Ветры, дующие в этом урагане, достигают скорости 500-600 км/ч (порядка 170 м/с). В сравнении с этим наши самые сильные земные ураганы – не более, чем легкий приятный ветерок. Однако в центре пятна, как и в земных ураганах подобного типа, вполне спокойная погода. Кстати, на ветра намного сильнее.

Кроме Большого красного пятна на планете Юпитер имеются и другие подобные образования – ураганы. Они формируются в разных областях и могут существовать десятилетиями, постепенно исчезая. Иногда они сталкиваются между собой или даже с Большим красным пятном, и тогда его яркость и размеры могут меняться. Самые долгоживущие вихри образуются в южном полушарии, а вот почему это так, непонятно.

Спутники Юпитера

Гигант Юпитер имеет очень большую свиту, как и подобает настоящему богу. На сегодняшний день известно 79 спутников, самых разных размеров и форм — от огромных, подобных Луне, до кусков камня в несколько километров, подобных астероидам. Все они имеют имена, связанными с богом Зевсом-Юпитером в мифологии. Учёные считают, что спутников может быть еще больше, хотя это итак уже рекордное количество среди всех планет Солнечной системы.

С тех пор, как в 1610 году Галилео Галилей открыл первые и самые крупные спутники Юпитера — , Ганимед, и Каллисто, они были единственными известными. Их можно заметить даже в бинокль, а в небольшой телескоп они видны вполне отчетливо.

Каждый из этих спутников Юпитера очень интересен и представляет собой уникальный мир. На некоторых ученые предполагают наличие условий для развития жизни, и даже разрабатываются проекты зондов для более подробного их исследования.

В 70-х годах прошлого века астрономы знали уже 13 спутников, а , пролетая мимо Юпитера, открыл еще три. В 90-х годах появились новые мощные телескопы, в том числе космический телескоп «Хаббл». С тех пор было открыто еще несколько десятком мелких спутников Юпитера, многие из которых имеют размер всего в несколько километров. Обнаружить их в любительский телескоп, конечно, невозможно.

Будущее Юпитера

Сейчас планета Юпитер на входит в обитаемую зону, так как располагается слишком далеко от Солнца и на поверхности его спутников не может существовать вода в жидком виде. Хотя её наличие и предполагается под поверхностным слоем — так называемые подповерхностные океаны, возможно, есть на Ганимеде, на Европе и на Каллисто.

Со временем Солнце будет увеличиваться в размерах, приближаясь к Юпитеру. Постепенно спутники Юпитера разогреются и на некоторых из них будут вполне комфортные условия для возникновения и поддержания жизни.

Однако уже через 7.5 миллиардов лет Солнце превратится в огромного красного гиганта, поверхность которого будет расположена от Юпитера всего в 500 миллионах километров — втрое ближе, чем от Земли до Солнца сейчас. Земля и даже к тому времени давно будут поглощены нашим раздувшимся светилом. А сам Юпитер превратится в планету типа «горячий Юпитер» — раскаленный до 1000 градусов газовый шар, который сам будет светиться. Его каменистые спутники будут представлять собой обожженные куски камня, а ледяные и вовсе исчезнут.

Но к тому времени более благоприятные условия возникнут на спутниках , один из которых — , и сейчас представляет собой целую органическую фабрику с толстой атмосферой. Возможно, тогда придет очередь для появления новых форм жизни и там.

Наблюдение Юпитера

Эта планета очень удобна для начинающих астрономов-любителей. Видно её в южной части неба, притом поднимается она достаточно высоко над горизонтом. По яркости Юпитер уступает разве что . Самые удобные моменты для наблюдений – противостояния, когда планета находится наиболее близко к Земле.

Противостояния Юпитера:

Наблюдать планету Юпитер интересно даже в бинокль. 8-10-кратное увеличение в темную ночь позволит увидеть 4 галилеевых спутника – Ио, Европу, Ганимед и Каллисто. Диск планеты при этом становится заметным и не выглядит просто точкой, как другие звезды. Деталей, конечно, в бинокль при таких увеличениях не видно.

Если вооружиться телескопом, то можно увидеть гораздо больше. Например, 90-мм рефрактор Sky Watcher 909 уже с комплектным окуляром 25-мм (увеличение 36 крат) позволяет увидеть несколько полос на диске Юпитера. 10-мм окуляр (90 крат) позволит увидеть несколько больше подробностей, в том числе и Большое красное пятно, тени от спутников на диске планеты.

Более крупные телескопы конечно, позволят рассмотреть детали Юпитера более подробно. Станут видны детали в поясах планеты и можно увидеть более слабые спутники. С мощным инструментом можно получить и неплохие снимки. Использовать телескоп диаметром более 300 мм бесполезно – атмосферное влияние не позволит увидеть больше деталей. Большинство астрономов-любителей для наблюдений Юпитера используют диаметром от 150 мм.

Для большего удобства можно применять светофильтры голубого или синего цвета. С ними более контрастно видно Большое красное пятно и пояса. Светло-красные фильтры помогают лучше рассмотреть детали синего оттенка, а с желтыми лучше рассматривать полярные области. С зелеными фильтрами контрастнее выглядят облачные пояса и Большое красное пятно.

Планета Юпитер очень активная, в атмосфере постоянно происходят изменения. Полный оборот он делает менее, чем за 10 часов, что позволяет увидеть на нем множество изменяющихся деталей. Поэтому это очень удобный объект для первых наблюдений, даже для тех, у кого довольно скромный инструмент.

Планеты Солнечной системы

24,79 м/с² Вторая космическая скорость 59,5 км/с Скорость вращения (на экваторе) 12,6 км/с или 45 300 км/ч Период вращения 9,925 часов Наклон оси вращения 3,13° Прямое восхождение на северном полюсе 17 ч 52 мин 14 с
268,057° Склонение на северном полюсе 64,496° Альбедо 0,343 (Бонд)
0,52 (геом.альбедо)

Планета была известна людям с глубокой древности, нашла своё отражение в мифологии и религиозных верованиях многих культур.

Юпитер состоит преимущественно из водорода и гелия. Скорее всего, в центре планеты имеется каменное ядро из более тяжёлых элементов под высоким давлением. Из-за быстрого вращения форма Юпитера - сплюснутый сфероид (он обладает значительной выпуклостью вокруг экватора). Внешняя атмосфера планеты явно разделена на несколько вытянутых полос вдоль широт, и это приводит к бурям и штормам вдоль их взаимодействующих границ. Заметный результат этого - Большое Красное Пятно , гигантский шторм, который известен с XVII века . По данным спускаемого аппарата «Галилео », давление и температура при углублении в атмосферу быстро растут. Юпитер обладает мощной магнитосферой .

Спутниковая система Юпитера состоит, по крайней мере, из 63 спутников , включая 4 больших спутника, называемые также «галилеевыми », которые были обнаружены Галилео Галилеем в 1610 году . Спутник Юпитера Ганимед имеет диаметр превосходящий диаметр Меркурия . Под поверхностью Европы обнаружен глобальный океан, а Ио известен тем, что на нём действуют самые мощные в Солнечной системе вулканы. У Юпитера имеются слабые планетарные кольца .

Юпитер исследовался восемью межпланетными станциями НАСА . Наибольшее значение имели исследования с помощью аппаратов «Пионер » и «Вояджер », и позднее «Галилео », сбросившим зонд в атмосферу планеты. Последним аппаратом, посетившим Юпитер, был зонд «Новые горизонты », направляющийся к Плутону .

Наблюдение

Параметры планеты

Юпитер - самая большая планета Солнечной системы. Его экваториальный радиус равен 71,4 тыс. км, что в 11,2 раза превышает радиус Земли .

Масса Юпитера более чем в 2 раза превышает суммарную массу всех остальных планет солнечной системы, в 318 раз - массу Земли и всего в 1000 раз меньше массы Солнца. Если бы Юпитер был примерно в 60 раз массивнее, он мог бы стать звездой. Плотность Юпитера примерно равна плотности Солнца и значительно уступает плотности Земли.

Экваториальная плоскость планеты близка к плоскости её орбиты, поэтому на Юпитере не бывает смен времён года.

Юпитер вращается вокруг своей оси, причём не как твёрдое тело: угловая скорость вращения уменьшается от экватора к полюсам. На экваторе сутки длятся около 9 ч 50 мин. Юпитер вращается быстрее, чем любая другая планета Солнечной системы. Вследствие быстрого вращения, полярное сжатие Юпитера весьма заметно: полярный радиус меньше экваториального на 4,6 тыс. км (то есть на 6,5 %).

Всё, что мы можем наблюдать на Юпитере - это облака верхнего слоя атмосферы. Гигантская планета состоит преимущественно из газа и не имеет привычной нам твёрдой поверхности.

Юпитер выделяет в 2-3 раза больше энергии, чем получает от Солнца. Это может объясняться постепенным сжатием планеты, опусканием гелия и более тяжёлых элементов или процессами радиоактивного распада в недрах планеты.

Большинство из известных на настоящее время экзопланет сопоставимы по массе и размерам с Юпитером, поэтому его масса (M J ) и радиус (R J ) широко используются в качестве удобных единиц измерения для указания их параметров.

Внутреннее строение

Юпитер состоит, в основном, из водорода и гелия. Под облаками находится слой глубиной 7-25 тыс. км, в котором водород постепенно изменяет своё состояние от газа к жидкости с увеличением давления и температуры (до 6000 °C). Чёткой границы, отделяющей газообразный водород от жидкого, по-видимому, не существует. Это должно выглядеть как непрерывное кипение глобального водородного океана.

Модель внутренней структуры Юпитера: каменистое ядро, окружённое толстым слоем металлического водорода.

Под жидким водородом находится слой жидкого металлического водорода толщиной, согласно теоретическим моделям, около 30-50 тыс. км. Жидкий металлический водород формируется при давлении в несколько миллионов атмосфер. Протоны и электроны в нём существуют раздельно, и он является хорошим проводником электричества. Мощные электротоки, возникающие в слое металлического водорода, порождают гигантское магнитное поле Юпитера.

Учёные полагают, что Юпитер имеет твёрдое каменное ядро, состоящее из тяжёлых элементов (более тяжёлых, чем гелий). Его размеры - 15-30 тыс. км в диаметре, ядро обладает высокой плотностью. По теоретическим расчётам, температура на границе ядра планеты - порядка 30 000 K , а давление - 30-100 млн атмосфер.

Измерения, сделанные как с Земли, так и зондами, позволили обнаружить, что выделяемая Юпитером энергия, в основном в виде инфракрасного излучения, приблизительно в 1,5 раза больше получаемой им от Солнца. Отсюда ясно, что Юпитер обладает значительным запасом тепловой энергии, образовавшимся в процессе сжатия материи при образовании планеты. В целом считается, что в юпитерианских недрах всё ещё очень жарко - около 30 000 К.

Атмосфера

Атмосфера Юпитера состоит из водорода (81 % по числу атомов и 75 % по массе) и гелия (18 % по числу атомов и 24 % по массе). На долю остальных веществ приходится не более 1 %. В атмосфере присутствуют метан , водяной пар , аммиак ; имеются также следы органических соединений, этана , сероводорода , неона , кислорода , фосфина , серы . Внешние слои атмосферы содержат кристаллы замороженного аммиака.

Облака, находящиеся на разной высоте, имеют свой цвет. Самые высокие из них красные, чуть пониже находятся белые, ещё ниже коричневые, а в самом нижнем слое - синеватые.

Красноватые вариации цвета Юпитера могут объясняться наличием соединений фосфора, серы и углерода. Поскольку цвет может сильно варьироваться, следовательно, химический состав атмосферы также различен в разных местах. Например, имеются «сухие» и «мокрые» области с разным содержанием водяного пара.

Температура внешнего слоя облаков - около −130 °C, однако быстро растёт с глубиной. По данным спускаемого аппарата «Галилео », на глубине 130 км температура равна +150 °C, давление - 24 атмосферы. Давление у верхней границы облачного слоя - около 1 атм, т. е. как у поверхности Земли. «Галилео» обнаружил «тёплые пятна» вдоль экватора. По-видимому, в этих местах слой внешних облаков тонок, и можно видеть более тёплые внутренние области.

Скорость ветров на Юпитере может превышать 600 км/ч. Циркуляция атмосферы определяется двумя основными факторами. Во-первых, вращение Юпитера в экваториальных и полярных областях неодинаково, поэтому атмосферные структуры вытягиваются в полосы, опоясывающие планету. Во-вторых, имеется температурная циркуляция за счёт тепла, выделяющегося из недр. В отличие от Земли (где циркуляция атмосферы происходит за счёт разницы солнечного нагрева в экваториальных и полярных областях) на Юпитере воздействие солнечной радиации на температурную циркуляцию незначительно.

Конвективные потоки, выносящие внутреннее тепло к поверхности, внешне проявляются в виде светлых зон и тёмных поясов. В области светлых зон отмечается повышенное давление, соответствующее восходящим потокам. Облака, образующие зоны, располагаются на более высоком уровне (примерно на 20 км), а их светлая окраска объясняется, видимо, повышенной концентрацией ярко-белых кристаллов аммиака. Располагающиеся ниже тёмные облака поясов состоят предположительно из красно-коричневых кристаллов гидросульфида аммония и имеют более высокую температуру. Эти структуры представляют области нисходящих потоков. Зоны и пояса имеют разную скорость движения в направлении вращения Юпитера. Период обращения колеблется на несколько минут в зависимости от широты. Это приводит к существованию устойчивых зональных течений или ветров, постоянно дующих параллельно экватору в одном направлении. Скорости в этой глобальной системе достигают от 50 до 150 м/с и выше. На границах поясов и зон наблюдается сильная турбулентность, которая приводит к образованию многочисленных вихревых структур. Наиболее известным таким образованием является Большое красное пятно , наблюдающееся на поверхности Юпитера в течение последних 300 лет.

В атмосфере Юпитера наблюдаются молнии, мощность которых на три порядка превышает земные, а также полярные сияния . Кроме того, орбитальным телескопом «Чандра » обнаружен источник пульсирующего рентгеновского излучения (названный Большим рентгеновским пятном), причины которого представляют пока загадку.

Большое красное пятно

Большое красное пятно - овальное образование изменяющихся размеров, расположенное в южной тропической зоне. В настоящее время оно имеет размеры 15×30 тыс. км (значительно больше размеров Земли), а 100 лет назад наблюдатели отмечали в 2 раза большие размеры. Иногда оно бывает не очень чётко видимым. Большое красное пятно - это уникальный долгоживущий гигантский ураган (антициклон), вещество в котором вращается против часовой стрелки и совершает полный оборот за 6 земных суток. Оно характеризуется восходящими течениями в атмосфере. Облака в нём расположены выше, а температура их ниже, чем в соседних областях.

Магнитное поле и магнитосфера

Жизнь на Юпитере

В настоящее время наличие жизни на Юпитере представляется маловероятным ввиду низкой концентрации воды в атмосфере и отсутствия твёрдой поверхности. В 1970-х годах американский астроном Карл Саган высказывался по поводу возможности существования в верхних слоях атмосферы Юпитера жизни на основе аммиака . Следует отметить, что даже на небольшой глубине в юпитерианской атмосфере температура и плотность достаточно высоки, и возможность по крайней мере химической эволюции исключать нельзя, поскольку скорость и вероятность протекания химических реакций благоприятствуют этому. Однако возможно существование на Юпитере и водно-углеводородной жизни: в содержащем облака из водяного пара слое атмосферы температура и давление также весьма благоприятны.

Комета Шумейкеров-Леви

След от одного из обломков кометы.

В июле 1992 года к Юпитеру приблизилась комета . Она прошла на расстоянии около 15 тысяч километров от верхней границы облаков и мощное гравитационное воздействие планеты-гиганта разорвало её ядро на 17 больших частей. Этот кометный рой был обнаружен на обсерватории Маунт-Паломар супругами Кэролайн и Юджином Шумейкерами и астрономом-любителем Дэвидом Леви. В 1994 году , при следующем сближении с Юпитером, все обломки кометы врезались в атмосферу планеты с огромной скоростью - около 64 километров в секунду. Этот грандиозный космический катаклизм наблюдался как с Земли, так и с помощью космических средств, в частности, с помощью Космического телескопа «Хаббл» , инфракрасного спутника IUE и межпланетной космической станции «Галилео» . Падение ядер сопровождалось интересными атмосферными эффектами, например, полярными сияниями , чёрными пятнами в местах падения ядер кометы, климатическими изменениями.

Пятно в районе Южного полюса Юпитера.

Примечания

Ссылки

Название «Юпитер» носит самая крупная из восьми планет Солнечной системы. Известный с самой глубокой древности, Юпитер и сейчас представляет огромный интерес для человечества. Изучение планеты, её спутников и связанных с ними процессов активно происходит в наше время, и не будет прекращено в будущем.

Происхождение названия

Своё название Юпитер получил в честь одноименно божества древнеримского пантеона. В мифологии римлян Юпитер был верховным богом, владыкой неба и всего мира. Наряду со своими братьями Плутоном и Нептуном он относился к группе главных богов, которые были наиболее могущественными. Прообразом Юпитера был Зевс – главный из олимпийских богов в верованиях древних греков.

Названия в других культурах

В древнем мире планета Юпитер была известна не только римлянам. Например, жители Вавилонского царства отождествляли её со своим верховным богом – Мардуком – и называли «Мулу Баббар», что означало «белая звезда». Греки, как уже ясно, связывали Юпитер с Зевсом, в Греции планета носила название «звезда Зевса». Астрономы из Китая называли Юпитер «Суй Син», то есть «Звезда года».

Интересен тот факт, что наблюдения за Юпитером вели и индейские племена. К примеру, инки называли гигантскую планету «Пирва», что означало «склад, амбар» на языке кечуа. Вероятно, выбранное название было связано с тем, что индейцы наблюдали не только саму планету, но и некоторые из её спутников.

О характеристиках

Юпитер является пятой планетой от Солнца, его «соседями» являются Сатурн и Марс. Планета относится к группе газовых гигантов, которые, в отличие от планет земной группы состоят в основном из газовых элементов, и поэтому имеют низкую плотность и более быстрое суточное вращение.

Размеры Юпитера делают его настоящим исполином.Радиус его экватора составляет 71 400 километров, что больше радиуса Земли в 11 раз. Масса Юпитера равняется 1,8986 х 1027 килограмм, чтопревосходит даже общую массу остальных планет.

Структура

К настоящему времени существует несколько моделей возможного строения Юпитера, но наиболее признанная трёхслойная модель выглядит следующим образом:

  • Атмосфера. Состоит их трёх слоёв: внешний водородный; средний водородно-гелиевый; нижний водородно-гелиевый с другими примесями. Интересен тот факт, что под слоем непрозрачных облаков Юпитера находится водородный слой (от 7 000 до 25 000 километров), который постепенно переходит из газообразного состояния в жидкое, при этом растут его давление и температура. Чётких границ перехода из газа в жидкость не существует, то есть, происходит что-то вроде постоянного «кипения» океана из водорода.
  • Слой металлического водорода. Приблизительная толщина – от 42 до 26 тысяч километров. Металлический водород – это продукт, который образуется при большом давлении (около 1000 000 Ат) и высокой температуре.
  • Ядро. Предполагаемый размер превышает диаметр Земли в 1.5 раза, а масса больше земной в 10 раз. О массе и размерах ядра позволяет судить изучение инерционных моментов планеты.

Кольца

Сатурн оказался не единственным обладателей колец. Позже они были обнаружены у Урана, а затем и у Юпитера. Кольца Юпитера делятся на:

  1. Главное. Ширина: 6 500 км. Радиус: от 122 500 до 129 000 км. Толщина: от 30 до 300 км.
  2. Паутинные. Ширина: 53 000 (кольцо Амальтеи) и 97 000 (кольцо Фивы) км. Радиус: от 129 000 до 182 000 (кольцо Амальтеи) и 129 000 до 226 000 (кольцо Фивы) км. Толщина: 2000 (кольцо Аматери) и 8400 (кольцо Фивы) км.
  3. Гало. Ширина: 30 500 км. Радиус: от 92 000 до 122 500 км. Толщина: 12 500 км.

Впервые о наличие у Юпитера колец сделали предположения советские астрономы, но воочию их обнаружил космический зонд «Вояджер-1» в 1979 году.

История возникновения и эволюции

Сегодня наука располагает двумя теориями возникновения и эволюции газового гиганта.

Теория контракции

За основу этой гипотезы было взято сходство химического состава Юпитера и Солнца. Суть теории: когда Солнечная система только начинала формироваться, в протопланетном диске образовались крупные сгустки, которые затем превратились в Солнце и планеты.

Теория аккреции

Суть теории: формирование Юпитера происходило в течение двух периодов. В первый период происходило формирование твёрдых планет, таких, как планеты земного типа. Во время второго периода имел место процесс аккреции (то есть притяжения) газа этими космическими телами, таким образом образовались планеты Юпитер и Сатурн.

Краткая история изучения

Как становится ясно, впервые Юпитер был замечен ещё народами древнего мира, которые вели за ним наблюдения. Однако, по-настоящему серьёзные исследования планеты-гиганта начались в 17 веке. Именно в это время Галилео Галилей изобрёл свой телескоп и приступил к изучению Юпитера, в ходе которого ему удалось обнаружить четыре самых крупных спутника планеты.

Следующим стал Джованни Кассини, франко-итальянский инженер и астроном. Он впервые заметил на Юпитере полосы и пятна.

В 17 века Оле Рёмер изучил затмение спутников планеты, что позволило ему рассчитать точное положение её спутников и, в конце концов, установить величину скорости света.

Позже появление мощных телескопов и космических аппаратов сделало изучение Юпитера очень активным. Ведущую роль на себя взяло аэрокосмическое агенство США «НАСА», которое осуществило запуск огромного количества космических станций, зондов и других аппаратов. С помощью каждого из них были получены важнейшие данные, которые позволили изучить происходящие на Юпитере и его спутниках процессы и понять механизмы их протекания

Некоторые сведения о спутниках

Сегодня науке известно 63 спутника Юпитера – больше, чем у любой другой планеты Солнечной системы. 55 из них относятся к внешним, 8 – к внутренним.Однако, учёные предполагают, что общее число всех спутников газового гиганта может превышать сотню.

Самыми крупными и известными являются так называемые «Галилеевые» спутники. Как понятно из названия, их первооткрывателем стал Галилео Галилей. К ним относятся: Ганимед, Каллисто, Ио и Европа.

Вопрос жизни

В конце 20 века астрофизики из США допустили возможность существования жизни на Юпитере. По их мнению, её образованию могли способствовать аммиак и водяной пар, которые присутствуют в атмосфере планеты.

Однако, серьёзно говорить о жизни на гигантской планете не приходится. Газообразное состояние Юпитера, низкий уровень содержания в атмосфере воды и многие другие факторы делают подобные предположения совершенно голословными.

  • По яркости Юпитер уступает только Луне и Венере.
  • Человек весом 100 килограмм весил бы на Юпитере 250 килограмм за счёт высокой гравитации.
  • Алхимики отождествляли Юпитер с одним из главных элементов - оловом.
  • Астрология считает Юпитер покровителем остальных планет.
  • Цикл вращения Юпитера занимает всего десять часов.
  • Вокруг Солнца Юпитер обращается за двенадцать лет.
  • Многие спутники планеты названы именами любовниц бога Юпитера.
  • В объём Юпитера поместилось бы более тысячи планет типа Земли.
  • На планете нет смены времён года.

Юпитер является пятой планетой по удаленности от Солнца и самой крупной в Солнечной системе. Так же, как и Уран, Нептун и Сатурн, Юпитер относится к газовым гигантам. Про него человечество знало уже давно. Довольно часто встречаются упоминания о Юпитере в религиозных верованиях и мифологии. В современности планета получила свое имя в честь древнеримского бога.

По масштабам на Юпитере атмосферные явления намного превосходят земные. Самым примечательным образованием на планете считается Большое красное пятно, которое является гигантским штормом, известным нам еще с 17 века.

Примерное число спутников – 67, из которых самыми крупными являются: Европа, Ио, Каллисто и Ганимед. Первым их открыл Г. Галилей в 1610 году.

Все исследования планеты проводятся при помощи орбитальных и наземных телескопов. Начиная с 70-х годов к Юпитеру отправили 8 аппаратов НАСА. Во время великих противостояний планета была видна невооруженным глазом. Юпитер относится к самым ярким объектам неба после Венеры и Луны. А спутники и сам диск считаются самыми популярными для наблюдателей.

Наблюдения за Юпитером

Оптический диапазон

Если рассматривать объект в инфракрасной области спектра, можно обратить внимание на молекулы Не и Н2, точно так же становятся заметными линии остальных элементов. Количество Н говорит о происхождении планеты, а про внутреннюю эволюцию можно узнать благодаря качественному и количественному составу других элементов. Но молекулы гелия и водорода не обладают дипольным моментом, а это означает, что их абсорбционные линии не заметны до момента поглощения ударной ионизацией. Также данные линии появляются в верхних слоях атмосферы, откуда они не способны нести данные про более глубокие слои. Исходя из этого, самую достоверную информацию о количестве водорода и гелия на Юпитере можно получить, используя аппарат «Галилео».

Касательно остальных элементов, их анализ и интерпретация сильно затруднительны. Полной достоверности о происходящих процессах в атмосфере планеты сказать никак нельзя. Также под большим вопросом химический состав. Но, по мнению большинства астрономов, все процессы, которые могут влиять на элементы, локальны и ограничены. Из этого выходит, что они не несут особых изменений в распределение веществ.

Юпитер излучает энергии на 60% больше, чем потребляет от Солнца. Данные процессы влияют на размеры планеты. В год Юпитер уменьшается на 2 см. П. Боденхеймер в 1974 году выдвинул мнение, что в момент формирования планета была в 2 раза больше, нежели сейчас, а температура была значительно выше.

Гамма-диапазон

Изучение планеты в гамма-диапазоне касается полярного сияния и изучения диска. Космическая лаборатория Эйнштейна зарегистрировала это в 1979 году. С Земли области полярного сияния в ультрафиолете и рентгене совпадают, но к Юпитеру это не относится. Более ранние наблюдения установили пульсацию излучения с периодичностью в 40 минут, но поздние наблюдения эту зависимость проявили намного хуже.

Астрономы надеялись, что при помощи рентгеновского спектра авроральное сияние на Юпитере будет похоже на сияние комет, но наблюдения с Chandra опровергли эту надежду.

По данным космической обсерватории XMM-Newton, выходит, что излучение диска в спектре гамма – это солнечное рентгеновское отражение излучения. По сравнению с полярным сиянием нет никакой периодичности интенсивности излучения.

Радионаблюдения

Юпитер относится к самым мощным радиоисточникам Солнечной системы в метровом-дециметровом диапазонах. Радиоизлучение обладает спорадическим характером. Подобные всплески происходят в диапазоне от 5 до 43 МГц, со средней шириной – 1 МГц. Продолжительность всплеска сильно мала – 0,1-1 сек. Излучение поляризовано, а по кругу может достигать 100%.

Радиоизлучение планеты в короткосантиметровом-миллиметровом диапазонах обладает чисто тепловым характером, хоть в отличие от равновесной температуры яркостная значительно выше. Эта особенность говорит о потоке тепла из недр Юпитера.

Вычисления гравитационного потенциала

Анализ траекторий космических аппаратов и наблюдения движений естественных спутников показывают гравитационное поле Юпитера. Обладает сильными отличиями в сравнении со сферически симметричным. Как правило, гравитационный потенциал представлен в разложенном виде по полиномам Лежандра.

Аппараты «Пионер-10», «Пионер-11», «Галилео», «Вояджер-1», «Вояджер-2» и «Кассини» использовали для вычисления гравитационного потенциала насколько измерений: 1) передавали изображения, чтобы определить их местоположение; 2) эффект Доплера; 3) радиоинтерферометрия. Некоторым из них при измерениях приходилось учитывать гравитационное присутствие Большого красного пятна.

Помимо этого, обрабатывая данные, приходится постулировать теорию движения спутников Галилея, обращающихся вокруг центра планеты. Огромной проблемой для точных вычислений считается учет ускорения, у которого негравитационный характер.

Юпитер в Солнечной системе

Экваториальный радиус данного газового гиганта составляет 71,4 тыс. км, тем самым в 11,2 раза превышая Земной. Юпитер – это единственная в своем роде планета, у которой центр масс с Солнцем расположен вне Солнца.

Масса Юпитера превышает суммарный вес всех планет в 2,47 раза, Земли – в 317,8 раз. Но меньше от массы Солнца в 1000 раз. По плотности сильно схожа со Светилом и в 4,16 раз меньше, чем у нашей планеты. Зато сила тяжести превышает земную в 2,4 раза.

Планета Юпитер как «неудавшаяся звезда»

Некоторые исследования теоретических моделей показали, что если бы масса Юпитера была немного большей, чем она есть в действительности, то планета начала бы сжиматься. Хоть небольшие изменения особо не повлияли бы на радиус планеты, при условии если б реальная масса увеличилась в четыре раза, планетарная плотность выросла настолько, что начался б процесс уменьшения размеров из-за действия сильной гравитации.

Исходя из данного исследования, Юпитер обладает максимальным диаметром как для планеты с аналогичной историей и строением. Дальнейшее увеличение массы привело к продолжительности сжатия до тех пор, пока Юпитер в процессе формирования звезды не превратился бы в коричневого карлика с массой, превосходящей его нынешнюю массу в 50 раз. Астрономы считают, что Юпитер – это «неудавшаяся звезда», хоть до сих пор не ясно, существует ли схожесть между процессом формирования планеты Юпитер и теми планетами, которые формируют двойные звездные системы. По ранним данным выходит, что Юпитер должен был быть в 75 раз массивнее, чтобы стать звездой, но самый маленький известный красный карлик больший в диаметре всего на 30%.

Вращение и орбита Юпитера

Юпитер с Земли имеет видимую величину в 2,94m, что делает планету третьим объектом по яркости, которые видны невооруженным взглядом после Венеры и Луны. Максимально отдалившись от нас, видимый размер планеты равен 1,61m. Минимальное расстояние от Земли к Юпитеру равно 588 миллионов километров, а максимальное - 967 миллионов километров.

Противостояние между планетами происходит каждые 13 месяцев. Нужно отметить, что раз в 12 лет проходит великое противостояние Юпитера, в данный момент планета находится возле перигелия собственной орбиты, при этом угловой размер объекта с Земли равен 50 угловым секундам.

Юпитер удален от Солнца на 778,5 миллионов километров, при этом полный оборот вокруг Солнца планета делает за 11,8 земных года. Наибольшее возмущение на движение Юпитера по собственной орбите делает Сатурн. Существует два вида возмещения:

    Вековое – оно действует на протяжении 70 тысяч лет. При этом меняется эксцентриситет орбиты планеты.

    Резонансное - проявляется за счет соотношения близости 2:5.

Особенностью планеты можно назвать то, что она имеет большую близость между плоскостью орбиты и плоскостью планеты. На планете Юпитер не бывает смены сезонов года, за счет того, что ось вращения планеты наклонена 3,13°, для сравнения можно добавить, что наклон оси Земли равен 23,45°.

Вращение планеты вокруг своей оси является самым быстрым среди всех планет, которые входят в Солнечную систему. Таким образом, в районе экватора Юпитер делает оборот вокруг оси за 9 часов 50 минут и 30 секунд, а средние широты этот оборот делают на 5 минут и 10 дольше. В силу такого вращения радиус планеты на экваторе на 6,5% больше чем в средних широтах.

Теории о существовании жизни на Юпитере

Огромное количество исследований за все время говорит о том, что условия Юпитера не способствуют зарождению жизни. Прежде всего, это объясняется низким содержанием воды в составе атмосферы планеты и отсутствием твердой основы планеты. Нужно отметить, что в 70-х годах прошлого века была выдвинута теория о том, что в верхних слоях атмосферы Юпитера возможно существование живых организмов, которые живут на основе аммиака. В поддержку данной гипотезы можно сказать, что атмосфера планеты даже на небольших глубинах имеет высокую температуру и большую плотность, а это способствует химическим эволюционным процессам. Данная теория была высказана Карлом Саганом, после чего совместно с Э.Э. Солпитером ученые проделали ряд вычислений, которые позволили вывести три предполагаемых формы жизни на планете:

  • Флотеры – должны были выступать как огромные организмы, размером как большой город на Земле. Они подобны к воздушному шару, поскольку занимаются откачкой с атмосферы гелия и оставляя водород. Живут в верхних слоях атмосферы и вырабатывают молекулы для питания самостоятельно.
  • Синкеры – микроорганизмы, которые способны очень быстро размножаться, что и позволяет выжить виду.
  • Ханнтеры – хищники, которые питаются флотерами.

Но это только гипотезы, которые не подтверждены научными фактами.

Строение планеты

Современные технологии еще не позволяют ученым точно определить химический состав планеты, но все же верхние слои атмосферы Юпитера изучены с высокой точностью. Изучение атмосферы стало возможным только за счет спуска космического аппарата под названием «Галилео», он вошел в атмосферу планеты в декабре 1995 года. Это позволило точно говорить, что атмосфера состоит из гелия и водорода, кроме этих элементов, был обнаружен метан, аммиак, вода, фосфин и сероводород. Предполагается, что более глубокий шар атмосферы, а именно тропосфера, состоит из серы, углерода, азота и кислорода.

Также присутствуют инертные газы, такие как ксенон, аргон и криптон, причем их концентрация больше чем на Солнце. Возможность существования воды, диоксида и моноксидуглеродов возможна в верхних слоях атмосферы планеты за счет столкновения с кометами, как пример приводят комету Шумейкеров-Леви 9.

Красноватый цвет планеты объясняется присутствием соединений красного фосфора, углерода и серы или даже за счет органики, которая зародилась при воздействии электрических разрядов. Нужно отметить, что цвет атмосферы неоднороден, это говорит о том, что разные участки состоят из разных химических компонентов.

Структура Юпитера

Принято считать, что внутренняя структура планеты под облаками состоит со слоя гелия и водорода толщиной в 21 тысячу километров. Здесь вещество имеет плавный переход в своей структуре от газообразного состояния до жидкого, после чего идет слой с металлическим водородом мощностью в 50 тысяч километров. Средняя часть планеты занята твердым ядром с радиусом в 10 тысяч километров.

Наиболее признанная модель строения Юпитера:

  1. Атмосфера:
  2. Внешний водородный слой.

    Средний слой представлен гелием (10%) и водородом (90%).

  • Нижняя часть состоит из смеси гелия, водорода, аммония и воды. Этот слой подразделяют еще на три:

    • Верхний – аммиак в твердой форме, который имеет температуру в −145 °C с давлением в 1 атм.
    • Посередине находится гидросульфат аммония в кристаллизованном состоянии.
    • Нижнюю позицию занимает вода в твердом состоянии и возможно даже в жидком. Температура составляет порядка 130 °C, а давление 1 атм.
  1. Слой, состоящий из водорода в металлическом состоянии. Температуры могут меняться от 6,3 тысяч до 21 тысячи кельвинов. При этом давление так же изменчиво – от 200 и до 4 тысяч Гпа.
  2. Каменное ядро.

Создание данной модели стало возможным за счет анализа наблюдений и проведенных исследований с учетом законов экстраполяции и термодинамики. Нужно отметить, что данная структура строения не имеет четких границ и переходов между соседними слоями, а это в свою очередь говорит о том, что каждый слой полностью локализован, и исследовать их можно отдельно.

Атмосфера Юпитера

Температурные показатели роста по всей планете не монотонны. В атмосфере Юпитера, так же как и в атмосфере Земли, можно выделить несколько слоев. Верхние слои атмосферы обладают самыми высокими показателями температуры, а двигаясь к поверхности планеты, данные показатели значительно снижаются, но в свою очередь растет давление.

Термосфера планеты теряет большую часть тепла самой планеты, также здесь формируется так называемое полярное сияние. Верхней границей термосферы принято считать отметку давления в 1 нбар. При изучении были получены данные по температуре в этом слое, она достигает показателя в 1000 К. Ученым еще не удалось объяснить, почему здесь такая высокая температура.

Данные с аппарата «Галилео» показали, что температура верхних облаков составляет −107 °C при давлении в 1 атмосферу, а при спуске на глубину в 146 километров температура возрастает до показателя в +153 °C и давление в 22 атмосферы.

Будущее Юпитера и его спутников

Всем известно, что в итоге Солнце, как и другая звезда, исчерпает весь запас термоядерного топлива, при этом его светимость будет увеличиваться на 11% каждый миллиард лет. За счет этого привычная обитаемая зона значительно сместится за пределы орбиты нашей планеты вплоть до достижения поверхности Юпитера. Это позволит на спутниках Юпитера растопить всю воду, что позволит положить начало зарождения живых организмов на планете. Известно, что через 7,5 млрд лет Солнце как звезда превратится в красного гиганта, за счет этого Юпитер обретет новый статус и станет горячим Юпитером. При этом температура поверхности планеты будет составлять порядка 1000 К, а это приведет к свечению планеты. В этом случае спутники будут выглядеть как безжизненные пустыни.

Спутники Юпитера

Современные данные говорят, что Юпитер имеет 67 естественных спутников. Со слов ученых можно сделать вывод, что таких объектов вокруг Юпитера может быть больше сотни. Спутники планеты названы в основном в честь мифических персонажей, которые в какой-то мере связаны с Зевсом. Все спутники подразделены на две группы: внешние и внутренние. К внутренним относятся только 8 спутников, среди которых и галилеевы.

Первые спутники Юпитера были открыты еще в 1610 году известным ученым Галилео Галилеем, это Европа, Ганимед, Ио и Каллисто. Данное открытие стало подтверждением правоты Коперника и его гелиоцентрической системе.

Вторая половина XX века ознаменовалась активным изучением космических объектов, среди которых особого внимания заслуживает Юпитер. Эту планету исследовали с помощью мощных наземных телескопов и радиотелескопов, но самые большие достижения в этой отрасли были получены за счет применения телескопа «Хаббла» и запуска большого количества зондов к Юпитеру. Исследования активно продолжаются и на данный момент, поскольку Юпитер хранит еще много тайн и загадок.

Юпитер - пятая планета от Солнца, крупнейшая в Солнечной системе. Наряду с Сатурном, Ураном и Нептуном Юпитер классифицируется как газовый гигант.

Планета была известна людям с глубокой древности, что нашло своё отражение в мифологии и религиозных верованиях различных культур: месопотамской, вавилонской, греческой и других. Современное название Юпитера происходит от имени древнеримского верховного бога-громовержца.

Ряд атмосферных явлений на Юпитере - такие, как штормы, молнии, полярные сияния, - имеют масштабы, на порядки превосходящие земные. Примечательным образованием в атмосфере является Большое красное пятно - гигантский шторм, известный с XVII века.

Юпитер имеет, по крайней мере, 67 спутников, самые крупные из которых - Ио, Европа, Ганимед и Каллисто - были открыты Галилео Галилеем в 1610 году.

Исследования Юпитера проводятся при помощи наземных и орбитальных телескопов; с 1970-х годов к планете было отправлено 8 межпланетных аппаратов НАСА: «Пионеры», «Вояджеры», «Галилео» и другие.

Во время великих противостояний (одно из которых происходило в сентябре 2010 года) Юпитер виден невооружённым глазом как один из самых ярких объектов на ночном небосклоне после Луны и Венеры. Диск и спутники Юпитера являются популярными объектами наблюдения для астрономов-любителей, сделавших ряд открытий (например, кометы Шумейкеров-Леви, которая столкнулась с Юпитером в 1994 году, или исчезновения Южного экваториального пояса Юпитера в 2010 году) .

Оптический диапазон

В инфракрасной области спектра лежат линии молекул H2 и He, а также линии множества других элементов. Количество первых двух несёт информацию о происхождении планеты, а количественный и качественный состав остальных - о её внутренней эволюции.

Однако молекулы водорода и гелия не имеют дипольного момента, а значит, абсорбционные линии этих элементов незаметны до того момента, пока поглощение за счёт ударной ионизации не станет доминировать. Это с одной стороны, с другой - эти линии образуются в самых верхних слоях атмосферы и не несут информацию о более глубоких слоях. Поэтому самые надёжные данные по обилию гелия и водорода на Юпитере получены со спускаемого аппарата «Галилео».

Что же касается остальных элементов, то при их анализе и интерпретации тоже возникают трудности. Пока что нельзя с полной уверенностью сказать, какие процессы происходят в атмосфере Юпитера и насколько сильно они влияют на химический состав - как во внутренних областях, так и во внешних слоях. Это создаёт определённые трудности при более детальной интерпретации спектра. Однако считается, что все процессы, способные тем или иным образом влиять на обилие элементов, локальны и сильно ограничены, так что они не способны глобально изменить распределения вещества.

Также Юпитер излучает (в основном в инфракрасной области спектра) на 60 % больше энергии, чем получает от Солнца. За счёт процессов, приводящих к выработке этой энергии, Юпитер уменьшается приблизительно на 2 см в год.

Гамма-диапазон

Излучение Юпитера в гамма-диапазоне связано с полярным сиянием, а также с излучением диска. Впервые зарегистрировано в 1979 году космической лабораторией имени Эйнштейна.

На Земле области полярных сияний в рентгене и ультрафиолете практически совпадают, однако, на Юпитере это не так. Область рентгеновских полярных сияний расположена гораздо ближе к полюсу, чем ультрафиолетовых. Ранние наблюдения выявили пульсацию излучения с периодом в 40 минут, однако, в более поздних наблюдениях эта зависимость проявляется гораздо хуже.

Ожидалось, что рентгеновский спектр авроральных сияний на Юпитере схож с рентгеновским спектром комет, однако, как показали наблюдения на Chandra, это не так. Спектр состоит из эмиссионных линий с пиками у кислородных линий вблизи 650 эВ, у OVIII линий при 653 эВ и 774 эВ, а также у OVII на 561 эВ и 666 эВ. Существуют также линии излучения при более низких энергиях в спектральной области от 250 до 350 эВ, возможно, они принадлежат сере или углероду.

Гамма-излучение, не связанное с полярным сиянием, впервые было обнаружено при наблюдениях на ROSAT в 1997 году. Спектр схож со спектром полярных сияний, однако в районе 0,7-0,8 кэВ. Особенности спектра хорошо описываются моделью корональной плазмы с температурой 0,4-0,5 кэВ с солнечной металличностью, с добавлением эмиссионных линий Mg10+ и Si12+. Существование последних, возможно, связано с солнечной активностью в октябре-ноябре 2003 года.

Наблюдения космической обсерватории XMM-Newton показали, что излучение диска в гамма-спектре - это отражённое солнечное рентгеновское излучение. В отличие от полярных сияний, никакой периодичности изменения интенсивности излучения на масштабах от 10 до 100 мин обнаружено не было.

Радионаблюдения

Юпитер - самый мощный (после Солнца) радиоисточник Солнечной системы в дециметровом - метровом диапазонах длин волн. Радиоизлучение имеет спорадический характер и в максимуме всплеска достигает 10-6.

Всплески происходят в диапазоне частот от 5 до 43 МГц (чаще всего около 18 МГц), в среднем их ширина составляет примерно 1 МГц. Длительность всплеска невелика: от 0,1-1 с (иногда до 15 с). Излучение сильно поляризовано, особенно по кругу, степень поляризации достигает 100 %. Наблюдается модуляция излучения близким спутником Юпитера Ио, вращающимся внутри магнитосферы: вероятность появления всплеска больше, когда Ио находится вблизи элонгации по отношению к Юпитеру. Монохроматический характер излучения говорит о выделенной частоте, скорее всего гирочастоте. Высокая яркостная температура (иногда достигает 1015 K) требует привлечения коллективных эффектов (типа мазеров).

Радиоизлучение Юпитера в миллиметровом - короткосантиметровом диапазонах имеет чисто тепловой характер, хотя яркостная температура несколько выше равновесной, что предполагает поток тепла из недр. Начиная с волн ~9 см Tb (яркостная температура) возрастает - появляется нетепловая составляющая, связанная с синхротронным излучением релятивистских частиц со средней энергией ~30 МэВ в магнитном поле Юпитера; на волне 70 см Tb достигает значения ~5·104 K. Источник излучения расположен по обе стороны планеты в виде двух протяжённых лопастей, что указывает на магнитосферное происхождение излучения.

Юпитер среди планет Солнечной системы

Масса Юпитера в 2,47 раза превосходит массу остальных планет Солнечной системы.

Юпитер - самая большая планета Солнечной системы, газовый гигант. Его экваториальный радиус равен 71,4 тыс. км, что в 11,2 раза превышает радиус Земли.

Юпитер - единственная планета, у которой центр масс с Солнцем находится вне Солнца и отстоит от него примерно на 7 % солнечного радиуса.

Масса Юпитера в 2,47 раза превышает суммарную массу всех остальных планет Солнечной системы, вместе взятых, в 317,8 раз - массу Земли и примерно в 1000 раз меньше массы Солнца. Плотность (1326 кг/м2) примерно равна плотности Солнца и в 4,16 раз уступает плотности Земли (5515 кг/м2). При этом сила тяжести на его поверхности, за которую обычно принимают верхний слой облаков, более чем в 2,4 раза превосходит земную: тело, которое имеет массу, например, 100 кг, будет весить столько же, сколько весит тело массой 240 кг на поверхности Земли. Это соответствует ускорению свободного падения 24,79 м/с2 на Юпитере против 9,80 м/с2 для Земли.

Юпитер как «неудавшаяся звезда»

Сравнительные размеры Юпитера и Земли.

Теоретические модели показывают, что если бы масса Юпитера была намного больше его реальной массы, то это привело бы к сжатию планеты. Небольшие изменения массы не повлекли бы за собой сколько-нибудь значительных изменений радиуса. Однако если бы масса Юпитера превышала его реальную массу в четыре раза, плотность планеты возросла бы до такой степени, что под действием возросшей гравитации размеры планеты сильно уменьшились. Таким образом, по всей видимости, Юпитер имеет максимальный диаметр, который могла бы иметь планета с аналогичным строением и историей. С дальнейшим увеличением массы сжатие продолжалось бы до тех пор, пока в процессе формирования звезды Юпитер не стал бы коричневым карликом с массой, превосходящей его нынешнюю примерно в 50 раз. Это даёт астрономам основания считать Юпитер «неудавшейся звездой», хотя неясно, схожи ли процессы формирования таких планет, как Юпитер, с теми, что приводят к формированию двойных звёздных систем. Хотя для того, чтобы стать звездой, Юпитеру потребовалось бы быть в 75 раз массивнее, самый маленький из известных красных карликов всего лишь на 30 % больше в диаметре.

Орбита и вращение

При наблюдениях с Земли во время противостояния Юпитер может достигать видимой звёздной величины в -2,94m, это делает его третьим по яркости объектом на ночном небе после Луны и Венеры. При наибольшем удалении видимая величина падает до?1,61m. Расстояние между Юпитером и Землёй меняется в пределах от 588 до 967 млн км.

Противостояния Юпитера происходят с периодом раз в 13 месяцев. В 2010 году противостояние планеты-гиганта пришлось на 21 сентября. Раз в 12 лет происходят великие противостояния Юпитера, когда планета находится около перигелия своей орбиты. В этот период времени его угловой размер для наблюдателя с Земли достигает 50 угловых секунд, а блеск - ярче -2,9m.

Среднее расстояние между Юпитером и Солнцем составляет 778,57 млн км (5,2 а. е.), а период обращения составляет 11,86 года. Поскольку эксцентриситет орбиты Юпитера 0,0488, то разность расстояния до Солнца в перигелии и афелии составляет 76 млн км.

Основной вклад в возмущения движения Юпитера вносит Сатурн. Первого рода возмущение - вековое, действующее на масштабе ~70 тысяч лет, меняя экцентриситет орбиты Юпитера от 0,2 до 0,06, а наклон орбиты от ~1° - 2°. Возмущение второго рода - резонансное с соотношением близким к 2:5 (с точностью до 5 знаков после запятой - 2:4,96666).

Экваториальная плоскость планеты близка к плоскости её орбиты (наклон оси вращения составляет 3,13° против 23,45° для Земли), поэтому на Юпитере не бывает смены времён года.

Юпитер вращается вокруг своей оси быстрее, чем любая другая планета Солнечной системы. Период вращения у экватора - 9 ч. 50 мин. 30 сек., а на средних широтах - 9 ч. 55 мин. 40 сек. Из-за быстрого вращения экваториальный радиус Юпитера (71492 км) больше полярного (66854 км) на 6,49 %; таким образом, сжатие планеты составляет (1:51,4).

Гипотезы о существовании жизни в атмосфере Юпитера

В настоящее время наличие жизни на Юпитере представляется маловероятным: низкая концентрация воды в атмосфере, отсутствие твёрдой поверхности и т. д. Однако ещё в 1970-х годах американский астроном Карл Саган высказывался по поводу возможности существования в верхних слоях атмосферы Юпитера жизни на основе аммиака. Следует отметить, что даже на небольшой глубине в юпитерианской атмосфере температура и плотность достаточно высоки, и возможность, по крайней мере, химической эволюции исключать нельзя, поскольку скорость и вероятность протекания химических реакций благоприятствуют этому. Однако возможно существование на Юпитере и водно-углеводородной жизни: в слое атмосферы, содержащем облака из водяного пара, температура и давление также весьма благоприятны. Карл Саган совместно с Э. Э. Солпитером, проделав вычисления в рамках законов химии и физики, описали три воображаемые формы жизни, могущие существовать в атмосфере Юпитера:

  • Синкеры (англ. sinker - «грузило») - крошечные организмы, размножение которых происходит очень быстро, и которые дают большое количество потомков. Это позволяет выжить части из них при наличии опасных конвекторных потоков, могущих унести синкеров в горячие нижние слои атмосферы;

  • Флоатеры (англ. floater - «поплавок») - гигантские (величиной с земной город) организмы, подобные воздушным шарам. Флоатер откачивает из воздушного мешка гелий и оставляет водород, что позволяет ему держаться в верхних слоях атмосферы. Питаться может органическими молекулами, или вырабатывать их самостоятельно, подобно земным растениям.

  • Хантеры (англ. hunter - «охотник») - хищные организмы, охотники на флоатеров.
  • Химический состав

    Химический состав внутренних слоёв Юпитера невозможно определить современными методами наблюдений, однако обилие элементов во внешних слоях атмосферы известно с относительно высокой точностью, поскольку внешние слои непосредственно исследовались спускаемым аппаратом «Галилео», который был спущен в атмосферу 7 декабря 1995 года. Два основных компонента атмосферы Юпитера - молекулярный водород и гелий. Атмосфера содержит также немало простых соединений, например, воду, метан (CH4), сероводород (H2S), аммиак (NH3) и фосфин (PH3). Их количество в глубокой (ниже 10 бар) тропосфере подразумевает, что атмосфера Юпитера богата углеродом, азотом, серой и, возможно, кислородом по фактору 2-4 относительно Солнца.

    Другие химические соединения, арсин (AsH3) и герман (GeH4), присутствуют, но в незначительных количествах.

    Концентрация инертных газов, аргона, криптона и ксенона, превышает их количество на Солнце (см. таблицу), а концентрация неона явно меньше. Присутствует незначительное количество простых углеводородов: этана, ацетилена и диацетилена, - которые формируются под воздействием солнечной ультрафиолетовой радиации и заряженных частиц, прибывающих из магнитосферы Юпитера. Диоксид углерода, моноксид углерода и вода в верхней части атмосферы, как полагают, своим присутствием обязаны столкновениям с атмосферой Юпитера комет, таких, например, как комета Шумейкеров-Леви 9. Вода не может прибывать из тропосферы, потому что тропопауза, действующая как холодная ловушка, эффективно препятствует поднятию воды до уровня стратосферы.

    Красноватые вариации цвета Юпитера могут объясняться наличием соединений фосфора, серы и углерода в атмосфере. Поскольку цвет может сильно варьироваться, предполагается, что химический состав атмосферы также различен в разных местах. Например, имеются «сухие» и «мокрые» области с разным содержанием водяного пара.

    Структура


    Модель внутренней структуры Юпитера: под облаками - слой смеси водорода и гелия толщиной около 21 тыс. км с плавным переходом от газообразной к жидкой фазе, затем - слой жидкого и металлического водорода глубиной 30-50 тыс. км. Внутри может находиться твёрдое ядро диаметром около 20 тыс. км.

    На данный момент наибольшее признание получила следующая модель внутреннего строения Юпитера:

    1.Атмосфера. Её делят на три слоя:
    a. внешний слой, состоящий из водорода;
    b. средний слой, состоящий из водорода (90 %) и гелия (10 %);
    c. нижний слой, состоящий из водорода, гелия и примесей аммиака, гидросульфата аммония и воды, образующих три слоя облаков:
    a. вверху - облака из оледеневшего аммиака (NH3). Его температура составляет около -145 °C, давление - около 1 атм;
    b. ниже - облака кристаллов гидросульфида аммония (NH4HS);
    c. в самом низу - водяной лёд и, возможно, жидкая водавероятно, имеется в виду - в виде мельчайших капель. Давление в этом слое составляет около 1 атм, температура примерно -130 °C (143 К). Ниже этого уровня планета непрозрачна.
    2. Слой металлического водорода. Температура этого слоя меняется от 6300 до 21 000 К, а давление от 200 до 4000 ГПа.
    3. Каменное ядро.

    Построение этой модели основано на синтезе наблюдательных данных, применении законов термодинамики и экстраполяции лабораторных данных о веществе, находящемся под высоким давлением и при высокой температуре. Основные предположения, положенные в её основу:

  • Юпитер находится в гидродинамическом равновесии

  • Юпитер находится в термодинамическом равновесии.
  • Если к этим положениям добавить законы сохранения массы и энергии, получится система основных уравнений.

    В рамках этой простой трёхслойной модели чёткой границы между основными слоями не существует, однако и области фазовых переходов невелики. Следовательно, можно сделать допущение, что почти все процессы локализованы, и это позволяет каждый слой рассматривать отдельно.

    Атмосфера

    Температура в атмосфере не растёт монотонно. В ней, как и на Земле, можно выделить экзосферу, термосферу, стратосферу, тропопаузу, тропосферу. В самых верхних слоях температура велика; по мере продвижения вглубь давление растёт, а температура падает до тропопаузы; начиная с тропопаузы, и температура, и давление растут по мере продвижения вглубь. В отличие от Земли, на Юпитере нет мезосферы и соответствующей ей мезопаузы.

    В термосфере Юпитера происходит довольно много интересных процессов: именно здесь планета теряет излучением значительную часть своего тепла, именно здесь формируются полярные сияния, именно тут формируется ионосфера. За её верхнюю границу взят уровень давления в 1 нбар. Наблюдаемая температура термосферы 800-1000 К, и на данный момент этот фактический материал до сих пор не получил объяснения в рамках современных моделей, так как в них температура не должна быть выше примерно 400 К. Охлаждение Юпитера тоже нетривиальный процесс: трёхатомный ион водорода(H3+), кроме Юпитера найденный только на Земле, вызывает сильную эмиссию в средней инфракрасной части спектра на длинах волн между 3 и 5 мкм.

    Согласно непосредственным измерениям спускаемого аппарата, верхний уровень непрозрачных облаков характеризовался давлением в 1 атмосферу и температурой -107 °C; на глубине 146 км - 22 атмосферы, +153 °C. Также «Галилео» обнаружил «тёплые пятна» вдоль экватора. По-видимому, в этих местах слой внешних облаков тонок, и можно видеть более тёплые внутренние области.

    Под облаками находится слой глубиной 7-25 тыс. км, в котором водород постепенно изменяет своё состояние от газа к жидкости с увеличением давления и температуры (до 6000 °C). Чёткой границы, отделяющей газообразный водород от жидкого, по-видимому, не существует. Это может выглядеть примерно как непрерывное кипение глобального водородного океана.

    Слой металлического водорода

    Металлический водород возникает при больших давлениях (около миллиона атмосфер) и высоких температурах, когда кинетическая энергия электронов превышает потенциал ионизации водорода. В итоге протоны и электроны в нём существуют раздельно, поэтому металлический водород является хорошим проводником электричества. Предполагаемая толщина слоя металлического водорода - 42-46 тыс. км.

    Мощные электротоки, возникающие в этом слое, порождают гигантское магнитное поле Юпитера. В 2008 году Реймондом Джинлозом из Калифорнийского университета в Беркли и Ларсом Стиксрудом из Лондонского университетского колледжа была создана модель строения Юпитера и Сатурна, согласно которой в их недрах находится также металлический гелий, образующий своеобразный сплав с металлическим водородом.

    Ядро

    С помощью измеренных моментов инерции планеты можно оценить размер и массу её ядра. На данный момент считается, что масса ядра - 10 масс Земли, а размер - 1,5 её диаметра.

    Юпитер выделяет существенно больше энергии, чем получает её от Солнца. Исследователи предполагают, что Юпитер обладает значительным запасом тепловой энергии, образовавшимся в процессе сжатия материи при формировании планеты. Прежние модели внутреннего строения Юпитера, стараясь объяснить избыточную энергию, выделяемую планетой, допускали возможность радиоактивного распада в её недрах или освобождение энергии при сжатии планеты под действием сил тяготения.

    Межслоевые процессы

    Локализовать все процессы внутри независимых слоёв невозможно: необходимо объяснять недостаток химических элементов в атмосфере, избыточное излучение и т. д.

    Различие в содержании гелия во внешних и во внутренних слоях объясняют тем, что гелий конденсируется в атмосфере и в виде капель попадает в более глубокие области. Данное явление напоминает земной дождь, но только не из воды, а из гелия. Недавно было показано, что в этих каплях может растворяться неон. Тем самым объясняется и недостаток неона.

    Движение атмосферы


    Анимация вращения Юпитера, созданная по фотографиям с «Вояджера-1», 1979 г.

    Скорость ветров на Юпитере может превышать 600 км/ч. В отличие от Земли, где циркуляция атмосферы происходит за счёт разницы солнечного нагрева в экваториальных и полярных областях, на Юпитере воздействие солнечной радиации на температурную циркуляцию незначительно; главными движущими силами являются потоки тепла, идущие из центра планеты, и энергия, выделяемая при быстром движении Юпитера вокруг своей оси.

    Ещё по наземным наблюдениям астрономы разделили пояса и зоны в атмосфере Юпитера на экваториальные, тропические, умеренные и полярные. Поднимающиеся из глубин атмосферы нагретые массы газов в зонах под действием значительных на Юпитере кориолисовых сил вытягиваются вдоль меридианов планеты, причём противоположные края зон движутся навстречу друг другу. На границах зон и поясов (области нисходящих потоков) присутствует сильная турбулентность. Севернее экватора потоки в зонах, направленные к северу, отклоняются кориолисовыми силами к востоку, а направленные к югу - к западу. В южном полушарии - соответственно, наоборот. Схожей структурой на Земле обладают пассаты.

    Полосы

    Полосы Юпитера в разные годы

    Характерной особенностью внешнего облика Юпитера являются его полосы. Существует ряд версий, объясняющих их происхождение. Так, по одной из версий, полосы возникали в результате явления конвекции в атмосфере планеты-гиганта - за счёт подогрева, и, как следствие, поднятия одних слоёв, и охлаждения и опускания вниз других. Весной 2010 года учёными была выдвинута гипотеза, согласно которой полосы на Юпитере возникли в результате воздействия его спутников. Предполагается, что под влиянием притяжения спутников на Юпитере сформировались своеобразные «столбы» вещества, которые, вращаясь, и сформировали полосы.

    Конвективные потоки, выносящие внутреннее тепло к поверхности, внешне проявляются в виде светлых зон и тёмных поясов. В области светлых зон отмечается повышенное давление, соответствующее восходящим потокам. Облака, образующие зоны, располагаются на более высоком уровне (примерно на 20 км), а их светлая окраска объясняется, видимо, повышенной концентрацией ярко-белых кристаллов аммиака. Располагающиеся ниже тёмные облака поясов состоят, предположительно, из красно-коричневых кристаллов гидросульфида аммония и имеют более высокую температуру. Эти структуры представляют области нисходящих потоков. Зоны и пояса имеют разную скорость движения в направлении вращения Юпитера. Период обращения колеблется на несколько минут в зависимости от широты. Это приводит к существованию устойчивых зональных течений или ветров, постоянно дующих параллельно экватору в одном направлении. Скорости в этой глобальной системе достигают от 50 до 150 м/с и выше. На границах поясов и зон наблюдается сильная турбулентность, которая приводит к образованию многочисленных вихревых структур. Наиболее известным таким образованием является Большое красное пятно, наблюдающееся на поверхности Юпитера в течение последних 300 лет.

    Возникнув, вихрь поднимает на поверхность облаков нагретые массы газа с парами малых компонентов. Образующиеся кристаллы аммиачного снега, растворов и соединений аммиака в виде снега и капель, обычного водяного снега и льда постепенно опускаются в атмосфере, пока не достигают уровней, на которых температура достаточна высока, и испаряются. После чего вещество в газообразном состоянии снова возвращается в облачный слой.

    Летом 2007 года телескоп «Хаббл» зафиксировал резкие изменения в атмосфере Юпитера. Отдельные зоны в атмосфере к северу и югу от экватора превратились в пояса, а пояса - в зоны. При этом изменились не только формы атмосферных образований, но и их цвет.

    9 мая 2010 года астроном-любитель Энтони Уэсли (англ. Anthony Wesley, также см. ниже) обнаружил, что с лика планеты внезапно исчезло одно из самых заметных и самых стабильных во времени образований - Южный экваториальный пояс. Именно на широте Южного экваториального пояса расположено «омываемое» им Большое красное пятно. Причиной внезапного исчезновения Южного экваториального пояса Юпитера считается появление над ним слоя более светлых облаков, под которыми и скрывается полоса тёмных облаков. По данным исследований, проведённых телескопом «Хаббл», был сделан вывод о том, что пояс не исчез полностью, а просто оказался скрыт под слоем облаков, состоящих из аммиака.

    Большое красное пятно

    Большое красное пятно - овальное образование изменяющихся размеров, расположенное в южной тропической зоне. Было открыто Робертом Гуком в 1664 году. В настоящее время оно имеет размеры 15?30 тыс. км (диаметр Земли ~12,7 тыс. км), а 100 лет назад наблюдатели отмечали в 2 раза большие размеры. Иногда оно бывает не очень чётко видимым. Большое красное пятно - это уникальный долгоживущий гигантский ураган, вещество в котором вращается против часовой стрелки и совершает полный оборот за 6 земных суток.

    Благодаря исследованиям, проведённым в конце 2000 года зондом «Кассини», было выяснено, что Большое красное пятно связано с нисходящими потоками (вертикальная циркуляция атмосферных масс); облака здесь выше, а температура ниже, чем в остальных областях. Цвет облаков зависит от высоты: синие структуры - самые верхние, под ними лежат коричневые, затем белые. Красные структуры - самые низкие. Скорость вращения Большого красного пятна составляет 360 км/ч. Его средняя температура составляет -163 °C, причём между окраинными и центральными частями пятна наблюдается различие в температуре порядка 3-4 градусов. Это различие, как предполагается, ответственно за тот факт, что атмосферные газы в центре пятна вращаются по часовой стрелке, в то время как на окраинах - против. Также выдвинуто предположение о взаимосвязи температуры, давления, движения и цвета Красного пятна, хотя как именно она осуществляется, учёные пока затрудняются сказать.

    Время от времени на Юпитере наблюдаются столкновения больших циклонических систем. Одно из них произошло в 1975 году, в результате чего красный цвет Пятна поблёк на несколько лет. В конце февраля 2002 года ещё один гигантский вихрь - Белый овал - начал тормозиться Большим красным пятном, и столкновение продолжалось целый месяц. Однако оно не нанесло серьёзного ущерба обоим вихрям, так как произошло по касательной.

    Красный цвет Большого красного пятна представляет собой загадку. Одной из возможных причин могут быть химические соединения, содержащие фосфор. Фактически цвета и механизмы, создающие вид всей юпитерианской атмосферы, до сих пор ещё плохо поняты и могут быть объяснены только при прямых измерениях её параметров.

    В 1938 году было зафиксировано формирование и развитие трёх больших белых овалов вблизи 30° южной широты. Этот процесс сопровождался одновременным формированием ещё нескольких маленьких белых овалов - вихрей. Это подтверждает, что Большое красное пятно представляет собой самый мощный из юпитерианских вихрей. Исторические записи не обнаруживают подобных долго существующих систем в средних северных широтах планеты. Наблюдались большие тёмные овалы вблизи 15° северной широты, но, видимо, необходимые условия для возникновения вихрей и последующего их превращения в устойчивые системы, подобные Красному пятну, существуют только в Южном полушарии.

    Малое красное пятно

    Большое красное пятно и «Малое красное пятно» в мае 2008 на фотографии, сделанной телескопом «Хаббл»

    Что же касается трёх вышеупомянутых белых вихрей-овалов, то два из них объединились в 1998 году, а в 2000 году возникший новый вихрь слился с оставшимся третьим овалом. В конце 2005 года вихрь (Овал ВА, англ. Oval BC) начал менять свой цвет, приобретя в конце концов красную окраску, за что получил новое название - Малое красное пятно. В июле 2006 года Малое красное пятно соприкоснулось со своим старшим «собратом» - Большим красным пятном. Тем не менее, это не оказало какого-либо существенного влияния на оба вихря - столкновение произошло по касательной. Столкновение было предсказано ещё в первой половине 2006 года.

    Молнии

    В центре вихря давление оказывается более высоким, чем в окружающем районе, а сами ураганы окружены возмущениями с низким давлением. По снимкам, сделанными космическими зондами «Вояджер-1» и «Вояджер-2», было установлено, что в центре таких вихрей наблюдаются колоссальных размеров вспышки молний протяжённостью в тысячи километров. Мощность молний на три порядка превышает земные.

    Магнитное поле и магнитосфера

    Схема магнитного поля Юпитера

    Первый признак любого магнитного поля - радиоизлучение, а также рентген. Строя модели происходящих процессов, можно судить о строении магнитного поля. Так было установлено, что магнитное поле Юпитера имеет не только дипольную составляющую, но и квадруполь, октуполь и другие гармоники более высоких порядков. Предполагается, что магнитное поле создаёт динамо-машина, похожая на земную. Но в отличие от Земли, проводником токов на Юпитере служит слой металлического гелия.

    Ось магнитного поля наклонена к оси вращения 10,2 ± 0,6°, почти как и на Земле, однако, северный магнитный полюс расположен рядом с южным географическим, а южный магнитный - с северным географическим. Напряжённость поля на уровне видимой поверхности облаков равна 14 Э у северного полюса и 10,7 Э у южного. Его полярность обратна полярности земного магнитного поля.

    Форма магнитного поля у Юпитера сильно сплюснута и напоминает диск (в отличие от каплевидной у Земли). Центробежная сила, действующая на со-вращающуюся плазму с одной стороны и тепловое давление горячей плазмы с другой растягивают силовые линии, образуя на расстоянии 20 RJ структуру, напоминающую тонкий блин, также известную как магнитодиск. Он имеет тонкую токовую структуру вблизи магнитного экватора.

    Вокруг Юпитера, как и вокруг большинства планет Солнечной системы, существует магнитосфера - область, в которой поведение заряженных частиц, плазмы, определяется магнитным полем. Для Юпитера источниками таких частиц является солнечный ветер и Ио. Вулканический пепел, выбрасываемый вулканами Ио, под действием солнечного ультрафиолета ионизуется. Так образуются ионы серы и кислорода: S+, O+, S2+ и O2+. Эти частицы покидают атмосферу спутника, однако остаются на орбите вокруг него, образуя тор. Этот тор был открыт аппаратом «Вояджер-1»; он лежит в плоскости экватора Юпитера и имеет радиус в 1 RJ в поперечном сечении и радиус от центра (в данном случае от центра Юпитера) до образующей поверхности в 5,9 RJ. Именно он принципиально меняет динамику магнитосферы Юпитера.

    Магнитосфера Юпитера. Захваченные магнитным полем ионы солнечного ветра на схеме показаны красным цветом, пояс нейтрального вулканического газа Ио - зелёным и пояс нейтрального газа Европы - синим. ENA - нейтральные атомы. По данным зонда «Кассини», полученным в начале 2001 г.

    Набегающий солнечный ветер уравновешивается давлением магнитного поля на расстояния в 50-100 радиусов планеты, без влияния Ио это расстояние было бы не более 42 RJ. На ночной стороне протягивается за орбиту Сатурна, достигая в длину 650 млн км и более. Ускоренные в магнитосфере Юпитера электроны достигают Земли. Если бы магнитосферу Юпитера можно было видеть с поверхности Земли, то её угловые размеры превышали бы размеры Луны.

    Радиационные пояса

    Юпитер обладает мощными радиационными поясами. При сближении с Юпитером «Галилео» получил дозу радиации, в 25 раз превышающую смертельную дозу для человека. Излучение радиационного пояса Юпитера в радиодиапазоне впервые было обнаружено в 1955 году. Радиоизлучение носит синхротронный характер. Электроны в радиационных поясах обладают огромной энергией, составляющей около 20 МэВ, при этом зондом «Кассини» было обнаружено, что плотность электронов в радиационных поясах Юпитера ниже, чем ожидалось. Поток электронов в радиационных поясах Юпитера может представлять серьёзную опасность для космических аппаратов ввиду большого риска повреждения аппаратуры радиацией. Вообще, радиоизлучение Юпитера не является строго однородным и постоянным - как по времени, так и по частоте. Средняя частота такого излучения, по данным исследований, составляет порядка 20 МГц, а весь диапазон частот - от 5-10 до 39,5 МГц.

    Юпитер окружён ионосферой протяжённостью 3000 км.

    Полярные сияния на Юпитере


    Структура полярных сияний на Юпитере: показано основное кольцо, полярное излучение и пятна, возникшие как результат взаимодействия с естественными спутниками Юпитера.

    Юпитер демонстрирует яркие устойчивые сияния вокруг обоих полюсов. В отличие от таких же на Земле, которые появляются в периоды повышенной солнечной активности, полярные сияния Юпитера являются постоянными, хотя их интенсивность меняется изо дня в день. Они состоят из трёх главных компонентов: основная и наиболее яркая область сравнительно небольшая (менее 1000 км в ширину), расположена примерно в 16 ° от магнитных полюсов; горячие пятна - следы магнитных силовых линий, соединяющих ионосферы спутников с ионосферой Юпитера, и области кратковременных выбросов, расположенных внутри основного кольца. Выбросы полярных сияний были обнаружены почти во всех частях электромагнитного спектра от радиоволн до рентгеновских лучей (до 3 кэВ), однако они наиболее ярки в среднем инфракрасном диапазоне (длина волны 3-4 мкм и 7-14 мкм) и глубокой ультрафиолетовой области спектра (длина волны 80-180 нм).

    Положение основных авроральных колец устойчиво, как и их форма. Однако их излучение сильно модулируется давлением солнечного ветра - чем сильнее ветер, тем слабее полярные сияния. Стабильность сияний поддерживается большим притоком электронов, ускоряемых за счёт разности потенциалов между ионосферой и магнитодиском. Эти электроны порождает ток, который поддерживает синхронность вращения в магнитодиске. Энергия этих электронов 10 - 100 кэВ; проникая глубоко внутрь атмосферы, они ионизируют и возбуждают молекулярный водород, вызывая ультрафиолетовое излучение. Кроме того, они разогревают ионосферу, чем объясняется сильное инфракрасное излучение полярных сияний и частично нагрев термосферы.

    Горячие пятна связаны с тремя Галилеевыми спутниками: Ио, Европа и Ганимед. Они возникают из-за того, что вращающаяся плазма замедляется вблизи спутников. Самые яркие пятна принадлежат Ио, поскольку этот спутник является основным поставщиком плазмы, пятна Европы и Ганимеда гораздо слабее. Яркие пятна внутри основных колец, появляющиеся время от времени, как считается, связаны с взаимодействием магнитосферы и солнечного ветра.

    Большое рентгеновское пятно


    Комбинированное фото Юпитера с телескопа «Хаббл» и с рентгеновского телескопа «Чандра» - февраль 2007 г.

    Орбитальным телескопом «Чандра» в декабре 2000 года на полюсах Юпитера (главным образом, на северном полюсе) обнаружен источник пульсирующего рентгеновского излучения, названный Большим рентгеновским пятном. Причины этого излучения пока представляют загадку.

    Модели формирования и эволюции

    Значительный вклад в наши представления о формировании и эволюции звёзд вносят наблюдения экзопланет. Так, с их помощью были установлены черты, общие для всех планет, подобных Юпитеру:

    Они образуются ещё до момента рассеяния протопланетного диска.
    Значительную роль в формировании играет аккреция.
    Обогащение тяжёлыми химическими элементами за счёт планетезималей.

    Существуют две основные гипотезы, объясняющие процессы возникновения и формирования Юпитера.

    Согласно первой гипотезе, получившей название гипотезы «контракции», относительное сходство химического состава Юпитера и Солнца (большая доля водорода и гелия) объясняется тем, что в процессе формирования планет на ранних стадиях развития Солнечной системы в газопылевом диске образовались массивные «сгущения», давшие начало планетам, т. е. Солнце и планеты формировались схожим образом. Правда, эта гипотеза не объясняет всё-таки имеющиеся различия в химическом составе планет: Сатурн, например, содержит больше тяжёлых химических элементов, чем Юпитер, а тот, в свою очередь, больше, чем Солнце. Планеты же земной группы вообще разительно отличаются по своему химическому составу от планет-гигантов.

    Вторая гипотеза (гипотеза «аккреции») гласит, что процесс образования Юпитера, а также Сатурна, происходил в два этапа. Сначала в течение нескольких десятков миллионов лет шёл процесс формирования твёрдых плотных тел, наподобие планет земной группы. Затем начался второй этап, когда на протяжении нескольких сотен тысяч лет длился процесс аккреции газа из первичного протопланетного облака на эти тела, достигшие к тому моменту массы в несколько масс Земли.

    Ещё на первом этапе из области Юпитера и Сатурна диссипировала часть газа, что повлекло за собой некоторые различия в химическом составе этих планет и Солнца. На втором этапе температура наружных слоёв Юпитера и Сатурна достигала 5000 °C и 2000 °C соответственно. Уран и Нептун же достигли критической массы, необходимой для начала аккреции, гораздо позже, что повлияло как на их массы, так и на химический состав.

    В 2004 году Катариной Лоддерс из Университета Вашингтона была выдвинута гипотеза о том, что ядро Юпитера состоит в основном из некоего органического вещества, обладающего клеящими способностями, что, в свою очередь, в немалой степени повлияло на захват ядром вещества из окружающей области пространства. Образовавшееся в результате каменное-смоляное ядро силой своего притяжения «захватило» газ из солнечной туманности, сформировав современный Юпитер. Эта идея вписывается во вторую гипотезу о возникновении Юпитера путём аккреции.

    Спутники и кольца


    Крупные спутники Юпитера: Ио, Европа, Ганимед и Каллисто и их поверхности.


    Спутники Юпитера: Ио, Европа, Ганимед и Каллисто


    По данным на январь 2012 года, у Юпитера известно 67 спутников - максимальное значение для Солнечной системы. По оценкам, спутников может быть не менее сотни. Спутникам даны в основном имена различных мифических персонажей, так или иначе связанных с Зевсом-Юпитером. Спутники разделяют на две большие группы - внутренние (8 спутников, галилеевы и негалилеевы внутренние спутники) и внешние (55 спутников, также подразделяются на две группы) - таким образом, всего получается 4 «разновидности». Четыре самых крупных спутника - Ио, Европа, Ганимед и Каллисто - были открыты ещё в 1610 году Галилео Галилеем]. Открытие спутников Юпитера послужило первым серьёзным фактическим доводом в пользу гелиоцентрической системы Коперника.

    Европа

    Наибольший интерес представляет Европа, обладающая глобальным океаном, в котором не исключено наличие жизни. Специальные исследования показали, что океан простирается вглубь на 90 км, его объём превосходит объём земного Мирового океана. Поверхность Европы испещрена разломами и трещинами, возникшими в ледяном панцире спутника. Высказывалось предположение, что источником тепла для Европы служит именно сам океан, а не ядро спутника. Существование подлёдного океана предполагается также на Каллисто и Ганимеде. Основываясь на предположении о том, что за 1-2 млрд лет кислород мог проникнуть в подлёдный океан, учёные теоретически предполагают наличие жизни на спутнике. Содержание кислорода в океане Европы достаточно для поддержания существования не только одноклеточных форм жизни, но и более крупных. Этот спутник занимает второе место по возможности возникновения жизни после Энцелада.

    Ио

    Ио интересен наличием мощных действующих вулканов; поверхность спутника залита продуктами вулканической активности. На фотографиях, сделанных космическими зондами, видно, что поверхность Ио имеет ярко-жёлтую окраску с пятнами коричневого, красного и тёмно-жёлтого цветов. Эти пятна - продукт извержений вулканов Ио, состоящих преимущественно из серы и её соединений; цвет извержений зависит от их температуры.
    [править] Ганимед

    Ганимед является самым большим спутником не только Юпитера, но и вообще в Солнечной системе среди всех спутников планет. Ганимед и Каллисто покрыты многочисленными кратерами, на Каллисто многие из них окружены трещинами.

    Каллисто

    На Каллисто, как предполагается, также есть океан под поверхностью спутника; на это косвенно указывает магнитное поле Каллисто, которое может быть порождено наличием электрических токов в солёной воде внутри спутника. Также в пользу этой гипотезы свидетельствует тот факт, что магнитное поле у Каллисто меняется в зависимости от его ориентации на магнитное поле Юпитера, то есть существует высокопроводящая жидкость под поверхностью данного спутника.

    Сравнение размеров Галилеевых спутников с Землёй и Луной

    Особенности галилеевых спутников

    Все крупные спутники Юпитера вращаются синхронно и всегда обращены к Юпитеру одной и той же стороной вследствие влияния мощных приливных сил планеты-гиганта. При этом Ганимед, Европа и Ио находятся друг с другом в орбитальном резонансе. К тому же среди спутников Юпитера существует закономерность: чем дальше спутник от планеты, тем меньше его плотность (у Ио - 3,53 г/см2, Европы - 2,99 г/см2, Ганимеда - 1,94 г/см2, Каллисто - 1,83 г/см2). Это зависит от количества воды на спутнике: на Ио её практически нет, на Европе - 8 %, на Ганимеде и Каллисто - до половины их массы.

    Малые спутники Юпитера

    Остальные спутники намного меньше и представляют собой скалистые тела неправильной формы. Среди них есть обращающиеся в обратную сторону. Из числа малых спутников Юпитера немалый интерес для учёных представляет Амальтея: как предполагается, внутри неё существует система пустот, возникших в результате имевшей место в далёком прошлом катастрофы - из-за метеоритной бомбардировки Амальтея распалась на части, которые затем вновь соединились под действием взаимной гравитации, но так и не стали единым монолитным телом.

    Метида и Адрастея - ближайшие спутники к Юпитеру с диаметрами примерно 40 и 20 км соответственно. Они движутся по краю главного кольца Юпитера по орбите радиусом 128 тысяч км, делая оборот вокруг Юпитера за 7 часов и являясь при этом самыми быстрыми спутниками Юпитера.

    Общий диаметр всей системы спутников Юпитера составляет 24 млн км. Более того, предполагается, что в прошлом спутников у Юпитера было ещё больше, но некоторые из них упали на планету под воздействием её мощной гравитации.

    Спутники с обратным вращением вокруг Юпитера

    Спутники Юпитера, чьи названия заканчиваются на «е» - Карме, Синопе, Ананке, Пасифе и другие (см. группа Ананке, группа Карме, группа Пасифе) - обращаются вокруг планеты в обратном направлении (ретроградное движение) и, по предположениям учёных, образовались не вместе с Юпитером, а были захвачены им позже. Аналогичным свойством обладает спутник Нептуна Тритон.

    Временные луны Юпитера

    Некоторые кометы представляют собой временные луны Юпитера. Так, в частности, комета Кусиды - Мурамацу (англ.)русск. в период с 1949 по 1961 гг. была спутником Юпитера, совершив за это время вокруг планеты два оборота. Кроме данного объекта известно ещё, как минимум, о 4 временных лунах планеты-гиганта.

    Кольца Юпитера


    Кольца Юпитера (схема).

    У Юпитера имеются слабые кольца, обнаруженные во время прохождения «Вояджера-1» мимо Юпитера в 1979 году. Наличие колец предполагал ещё в 1960 году советский астроном Сергей Всехсвятский на основе исследования дальних точек орбит некоторых комет Всехсвятский заключил, что эти кометы могут происходить из кольца Юпитера и предположил, что образовалось кольцо в результате вулканической деятельности спутников Юпитера (вулканы на Ио открыты два десятилетия спустя).

    Кольца оптически тонки, оптическая толщина их ~10-6, а альбедо частиц всего 1,5 %. Однако наблюдать их всё же возможно: при фазовых углах, близких к 180 градусам (взгляд «против света»), яркость колец возрастает примерно в 100 раз, а тёмная ночная сторона Юпитера не оставляет засветки. Всего колец три: одно главное, «паутинное» и гало.
    Фотография колец Юпитера, сделанная «Галилео» в прямом рассеянном свете.

    Главное кольцо простирается от 122 500 до 129 230 км от центра Юпитера. Внутри главное кольцо переходит в тороидальное гало, а снаружи контактирует с паутинным. Наблюдаемое прямое рассеяние излучения в оптическом диапазоне характерно для пылевых частиц микронного размера. Однако пыль в окрестности Юпитера подвергается мощным негравитационным возмущениям, из-за этого время жизни пылинок 103±1 лет. Это означает, что должен быть источник этих пылинок. На роль подобных источников подходят два малых спутника, лежащих внутри главного кольца - Метида и Адрастея. Сталкиваясь с метеороидами, они порождают рой микрочастиц, которые впоследствии распространяются по орбите вокруг Юпитера. Наблюдения паутинного кольца выявили два отдельных пояса вещества, берущих начало на орбитах Фивы и Амальтеи. Структура этих поясов напоминает строение зодиакальных пылевых комплексов.

    Троянские астероиды

    Троянские астероиды - группа астероидов, расположенных в районе точек Лагранжа L4 и L5 Юпитера. Астероиды находятся с Юпитером в резонансе 1:1 и движутся вместе с ним по орбите вокруг Солнца. При этом существует традиция называть объекты, расположенные около точки L4, именами греческих героев, а около L5 - троянских. Всего на июнь 2010 года открыто 1583 таких объекта.

    Существует две теории, объясняющих происхождение троянцев. Первая утверждает, что они возникли на конечном этапе формирования Юпитера (рассматривается аккрецирующий вариант). Вместе с веществом были захвачены планетозимали, на которые тоже шла аккреция, а так как механизм был эффективным, то половина из них оказались в гравитационной ловушке. Недостатки этой теории: число объектов, возникших таким образом, на четыре порядка больше наблюдаемого, и они имеют гораздо больший наклон орбиты.

    Вторая теория - динамическая. Через 300-500 млн лет после формирования солнечной системы Юпитер и Сатурн проходили через резонанс 1:2. Это привело к перестройке орбит: Нептун, Плутон и Сатурн увеличили радиус орбиты, а Юпитер уменьшил. Это повлияло на гравитационную устойчивость пояса Койпера, и часть астероидов, его населявших, переселились на орбиту Юпитера. Одновременно с этим были разрушены все изначальные троянцы, если таковые были.

    Дальнейшая судьба троянцев неизвестна. Ряд слабых резонансов Юпитера и Сатурна заставит их хаотично двигаться, но какова будет эта сила хаотичного движения и будут ли они выброшены со своей нынешней орбиты, трудно сказать. Кроме этого, столкновения между собой медленно, но верно уменьшают количество троянцев. Какие-то фрагменты могут стать спутниками, а какие-то кометами.

    Столкновения небесных тел с Юпитером
    Комета Шумейкеров - Леви


    След от одного из обломков кометы Шумейкеров-Леви, снимок с телескопа «Хаббл», июль 1994 г.
    Основная статья: Комета Шумейкеров - Леви 9

    В июле 1992 года к Юпитеру приблизилась комета. Она прошла на расстоянии около 15 тысяч километров от верхней границы облаков, и мощное гравитационное воздействие планеты-гиганта разорвало её ядро на 17 больших частей. Этот кометный рой был обнаружен на обсерватории Маунт-Паломар супругами Кэролин и Юджином Шумейкерами и астрономом-любителем Дэвидом Леви. В 1994 году, при следующем сближении с Юпитером, все обломки кометы врезались в атмосферу планеты с огромной скоростью - около 64 километров в секунду. Этот грандиозный космический катаклизм наблюдался как с Земли, так и с помощью космических средств, в частности, с помощью космического телескопа «Хаббл», спутника IUE и межпланетной космической станции «Галилео». Падение ядер сопровождалось вспышками излучения в широком спектральном диапазоне, генерацией газовых выбросов и формированием долгоживущих вихрей, изменением радиационных поясов Юпитера и появлением полярных сияний, ослаблением яркости плазменного тора Ио в крайнем ультрафиолетовом диапазоне.

    Другие падения

    19 июля 2009 года уже упомянутый выше астроном-любитель Энтони Уэсли (англ. Anthony Wesley) обнаружил тёмное пятно в районе Южного полюса Юпитера. В дальнейшем эту находку подтвердили в обсерватории Кек на Гавайях. Анализ полученных данных указал, что наиболее вероятным телом упавшим в атмосферу Юпитера был каменный астероид.

    3 июня 2010 года в 20:31 по международному времени два независимых наблюдателя - Энтони Уэсли (англ. Anthony Wesley, Австралия) и Кристофер Го (англ. Christopher Go, Филиппины) - засняли вспышку над атмосферой Юпитера, что, скорее всего, является падением нового, ранее неизвестного тела на Юпитер. Через сутки после данного события новые тёмные пятна в атмосфере Юпитера не обнаружены. Уже проведены наблюдения на крупнейших инструментах Гавайских островов (Gemini, Keck и IRTF) и запланированы наблюдения на космическом телескопе «Хаббл». 16 июня 2010 года НАСА опубликовало пресс-релиз, в котором сообщается, что на снимках, полученных на космическом телескопе «Хаббл» 7 июня 2010 года (через 4 суток после фиксирования вспышки), не обнаружены признаки падения в верхних слоях атмосферы Юпитера.

    20 августа 2010 года в 18:21:56 по международному времени произошла вспышка над облачным покровом Юпитера, которую обнаружил японский астроном-любитель Масаюки Татикава из префектуры Кумамото на сделанной им видеозаписи. На следующий день после объявления о данном событии нашлось подтверждение от независимого наблюдателя Аоки Казуо (Aoki Kazuo) - любителя астрономии из Токио. Предположительно, это могло быть падение астероида или кометы в атмосферу планеты-гиганта